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DO SEMIDEFINITE RELAXATIONS SOLVE SPARSE PCA UP TO
THE INFORMATION LIMIT?

BY ROBERT KRAUTHGAMER1,∗, BOAZ NADLER2,∗ AND DAN VILENCHIK3,†

Weizmann Institute of Science∗ and Ben-Gurion University†

Estimating the leading principal components of data, assuming they are
sparse, is a central task in modern high-dimensional statistics. Many algo-
rithms were developed for this sparse PCA problem, from simple diago-
nal thresholding to sophisticated semidefinite programming (SDP) methods.
A key theoretical question is under what conditions can such algorithms re-
cover the sparse principal components? We study this question for a single-
spike model with an �0-sparse eigenvector, in the asymptotic regime as
dimension p and sample size n both tend to infinity. Amini and Wain-
wright [Ann. Statist. 37 (2009) 2877–2921] proved that for sparsity lev-
els k ≥ �(n/ logp), no algorithm, efficient or not, can reliably recover the
sparse eigenvector. In contrast, for k ≤ O(

√
n/ logp), diagonal threshold-

ing is consistent. It was further conjectured that an SDP approach may close
this gap between computational and information limits. We prove that when
k ≥ �(

√
n), the proposed SDP approach, at least in its standard usage, can-

not recover the sparse spike. In fact, we conjecture that in the single-spike
model, no computationally-efficient algorithm can recover a spike of �0-
sparsity k ≥ �(

√
n). Finally, we present empirical results suggesting that up

to sparsity levels k = O(
√

n), recovery is possible by a simple covariance
thresholding algorithm.

1. Introduction. Principal components analysis (PCA) is a popular technique
for dimension reduction that has a wide range of applications involving multi-
variate data, in both science and engineering; see, for example, [4, 22]. The first
principal component (PC) of a p-dimensional random variable x = (x1, . . . , xp) is
the direction in which the variance of x is maximal, or equivalently, the leading
eigenvector of its population covariance matrix � = E[(x − μ)(x − μ)T ] where
μ = E[x]. In practice, one typically does not have explicit access to �, but rather
is given n samples from x, from which one computes the sample covariance matrix
�̂ and its leading eigenvectors.

Received September 2014; revised January 2015.
1Supported in part by a US–Israel BSF Grant #2010418, ISF Grant #897/13 and by the Citi Foun-

dation.
2Supported in part by the Citi Foundation.
3Research done in part while a postdoctoral fellow at the Weizmann Institute.
MSC2010 subject classifications. Primary 62H25; secondary 62F12.
Key words and phrases. Principal component analysis, spectral analysis, spiked covariance en-

sembles, sparsity, high-dimensional statistics, convex relaxation, semidefinite programming, Wishart
ensembles, random matrices, integrality gap.

1300

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/15-AOS1310
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


DO SEMIDEFINITE RELAXATIONS SOLVE SPARSE PCA? 1301

In contemporary applications where variables are plentiful (large p) but samples
are relatively scarce (small n), PCA suffers from two major limitations: (1) the
principal components are typically a linear combination of all variables, which
hinders their interpretation and subsequent use, and (2) while PCA is consistent in
the classical setting (p is fixed and n → ∞) [4, 31], it is generally inconsistent in
high-dimensions. Indeed, as shown, for example, in [8, 13, 20, 21, 32], when p is
comparable to, or significantly larger than n, the sample covariance matrix �̂ may
be a poor approximation to the population’s covariance matrix �, and its leading
eigenvectors may be far from the population’s principal components.

To address the first drawback, one can consider a sparse PCA problem, in which
for some appropriate parameter k, we search for a direction with at most k nonzero
coefficients and with maximal variance. Formally, the �0-sparse PCA problem is
defined by

L0(�) = argmax
{
wT �w :‖w‖2 = 1,‖w‖0 ≤ k

}
.(1.1)

We note that other notions of sparsity were considered in the literature, for exam-
ple, a population covariance matrix that has only a few large eigenvalues, whose
corresponding eigenvectors are sparse in �q -norm for q ∈ (0,2) [9, 10, 21, 28].

While standard (nonrestricted) PCA can be efficiently solved by computing
the eigenvectors of a symmetric matrix, sparse PCA is a difficult combinatorial
problem, and in fact solving L0(�) is NP-hard.4 Nevertheless, various compu-
tationally efficient approaches were developed to deal with the problem. These
include greedy or nonconvex optimization procedures [23, 40], methods based on
�1-regularization [12, 30, 39, 42], regularized singular-value-decomposition [34],
an augmented Lagrangian method [27], a simple diagonal thresholding (DT) al-
gorithm [21], and sophisticated semidefinite programming (SDP) methods [11].
The latter approach, and in particular its ability to recover an �0-sparse PC, are the
focus of the current paper.

SDP-based algorithm. We study the following concrete SDP relaxation of (1.1),
which was suggested by d’Aspremont et al. [12]:

argmax
{〈�̂,X〉 :X ∈ Sp

+, tr(X) = 1,‖X‖S ≤ k
}
,(1.2)

where for two matrices X,Y ∈ R
p×p we denote by 〈X,Y 〉 = ∑

i,j XijYij =
tr(XT Y ) their Frobenius inner-product, ‖X‖S = ∑

i,j |Xij | is the “absolute-sum
norm,” and Sp

+ = {X ∈ R
p×p :X = XT ,X � 0} is the cone of symmetric positive

semidefinite (PSD) matrices. As SDP (1.2) returns a symmetric matrix rather than
a vector, d’Aspremont et al. [12] suggested to output its leading eigenvector as an
estimate for the first sparse-PC. This algorithm is summarized as follows.

Single-spike input model. We examine Algorithm 1 under the single-spike mul-
tivariate Gaussian model introduced in [20], where the samples xi are of the form

xi = √
βuiz + ξ i , i = 1, . . . , n.(1.3)

4This claim follows from [29] and [33], but can also proved by a direct reduction from the k-clique
problem in a p-vertex graph, and considering � = A + pI where A is the graph’s adjacency matrix.
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Algorithm 1: SDP-estimator
input : (mean-centered) vectors x1, . . . ,xn ∈ R

p , sparsity parameter k

output: vector ẑ ∈ R
p

1 let �̂ = 1
n

∑n
i=1 xixT

i

2 compute a solution X ∈ R
p×p of SDP (1.2)

3 let ẑ be the leading (unit-length) eigenvector of X

Here, the parameter β > 0 is the signal strength, z ∈ R
p is the planted spike as-

sumed to be a k-sparse unit-length vector, ξ i ∈ R
p is a noise vector whose entries

are all i.i.d. N(0,1) and ui ∼ N(0,1). Furthermore, all the ui ’s and ξ i’s are inde-
pendent of each other. The corresponding population covariance matrix is

� = βzzT + Ip,(1.4)

and its largest eigenvalue is 1 + β , with associated eigenvector z. We consider
throughout the scenario (n,p, k) → ∞, and mention additional assumptions (e.g.,
β is fixed or p/n tends to c > 0) as needed.

Information versus computational limits. Amini and Wainwright [3] studied
this single-spike input model, under the additional assumption that the nonzero
entries of z are exactly of the form ±1/

√
k, which represents the hardest type

of k-sparse vectors. They proved that up to sparsity level k = O(κn,p) where
κn,p = √

n/ logp, Algorithm 1 outputs a vector ẑ whose support coincides with
that of z;5 they further showed, using a simple second moment calculation, that
up to the same order of sparsity level k = O(κn,p), the diagonal thresholding al-
gorithm [21] also recovers the support of z and fails whenever k/κn,p → ∞. In
contrast, Amini and Wainwright [3] showed that for k = �(κ2

n,p),6 every method
[including exhaustive search over all

(p
k

)
subsets of size k] will err with probability

at least 1/2. In fact, even the simpler task of detecting the presence of a spike is
not possible for this range of parameters, as recently proved in [6, 7]. For further
results including minimax rates, under more general sparsity models, see [10, 37,
38].

The following question thus remained open: Does Algorithm 1, which is more
sophisticated and computationally heavy, outperform the simple DT algorithm?
Specifically, are there intermediate sparsity levels κn,p < k < κ2

n,p (such that
k/κn,p → ∞, and ignoring multiplicative constants) for which ẑ still approximates
z in some useful sense? While not answering this question, Amini and Wainwright

5For technical reasons, their proof requires the additional condition k = O(logp), which they
conjecture can be removed.

6We write f = �(g) if f (n) ≥ Cg(n) for some absolute positive constant C and all sufficiently
large n. Similarly, f = �(g) means C1g(n) ≤ f (n) ≤ C2g(n).
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proved that for sparsity level up to k = O(κ2
n,p), if the solution to (1.2) remains

rank one, then the support of ẑ coincides with that of z. They then suggested that
for this �0-sparse PCA problem, the information and computational limits coin-
cide, both are equal �(κ2

n,p), and Algorithm 1 is optimal. In their words, “under
the rank-one condition, the SDP is in fact statistically optimal, that is, it requires
only the necessary number of samples (up to a constant factor) to succeed” [3],
page 2880.

Our results, formally stated below, prove that unfortunately this is not the case—
in fact, when k slightly exceeds κn,p , namely k = �(κn,p

√
logp) = �(

√
n), the

solution X of SDP (1.2) does not have rank one and is not close to zzT . Further-
more, if X has a low rank, then the output ẑ of Algorithm 1 is at best weakly
correlated with z. In Section 3 we present empirical simulation results showing
that indeed Algorithm 1 and DT perform similarly.

Given that the SDP algorithm does not seem to significantly improve over DT
under the single spike model, the following question arises: Is there a simple algo-
rithm which outperforms both? Motivated by the work of Bickel and Levina [8],
we suggest a light-weight greedy algorithm called Covariance Thresholding (CT),
which can be seen as a generalization of Diagonal Thresholding. We provide ex-
perimental results suggesting that CT is consistent for k = O(

√
n); see Section 3

for details. Recently, following our work, Deshpande and Montanari [16] rigor-
ously proved that a variant of our CT algorithm indeed asymptotically recovers the
support of z up to these sparsity levels. Finally, we note that despite our results,
there are other settings, such as estimating sparse eigenvectors of correlation ma-
trices, where SDP-based methods are provably better than diagonal thresholding,
possibly even achieving the relevant minimax rates [26, 41].

1.1. Our results. We consider the single-spike model defined in (1.3) in high-
dimensional settings whereby (n,p, k) → ∞ and p/nα → c for positive constants
c,α ≥ 1. We further assume that the k-sparse vector z has k nonzero entries of the
form ±1/

√
k. In what follows, we denote by supp(x) the set {i : xi �= 0}. In the

analysis, we assume without loss of generality that the nonzero coordinates of the
spike z are exactly its first k coordinates, that is, supp(z) = {1,2, . . . , k}.

For the case α = 1, that is, p/n → c, we focus on weak signal strengths β ≤√
p
n

, whereas when α > 1, the signal strength may grow to infinity provided it still

satisfies β ≤
√

p
n

; see assumption (b) below. The reason is that when α = 1 and

β >
√

p
n

, as the next theorem shows, recovering the support of z is computationally

easy, almost up to the information limit. As before, we let κn,p = √
n/ logp.

THEOREM 1.1 (Strong signal). Fix c > 1 and β >
√

c, and let (n,p, k) → ∞
such that p/n → c and k/κ2

n,p → 0. Let ŵ1 be the leading eigenvector of �̂, and
denote by suppk(ŵ1) its k largest entries in absolute value. Then suppk(ŵ1) =
supp(z) with probability tending to one as (n,p, k) → ∞.
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Our next results, stated in the three theorems below, refer to the following as-
sumptions:

(a) Fix positive c,α ≥ 1, and let (n,p, k) → ∞ such that p/nα → c.

(b) The signal strength, either fixed or growing with n,p, satisfies β ≤
√

p
n

.

(c) The sparsity level k satisfies k ≥ 2p/
√

n, and k/p → 0.

We next analyze the quality of the output ẑ of Algorithm 1, as measured by its
cosine-similarity to the planted spike z.

THEOREM 1.2 (Cosine similarity). Assume (a)–(c). Then there exists ε =
ε(n) → 0, such that if X is a solution of SDP (1.2), and λ1 is its largest eigenvalue,
then with probability tending to one as (n,p, k) → ∞, the output ẑ of Algorithm 1
satisfies

∣∣〈ẑ, z〉∣∣2 ≤ 23

λ1

√
n

p
(1 + √

β) + ε

λ1
.(1.5)

The following corollary of Theorem 1.2 shows that the SDP solution is far from
zzT . For a matrix A we denote its spectral norm by ‖A‖ = √

λmax(AAT ).

COROLLARY 1.3. Assume (a)–(c), and further that p ≥ 1504n. Let X be a
solution of SDP (1.2). Then ‖X − zzT ‖ ≥ 1

3 with probability tending to one as
(n,p, k) → ∞.

PROOF. Assume for contradiction that the matrix Y = X − zzT has a small
spectral norm η1 = ‖Y‖ < 1/3. Using Weyl’s inequality [35], ‖X‖ ≥ ‖zzT ‖−‖Y‖.
Since ‖z‖2 = 1, the largest eigenvalue of X is thus lower bounded by λ1 ≥ 1 −
1/3 = 2/3. Let ẑ be a (unit-length) eigenvector of X corresponding to this largest
eigenvalue λ1. Recalling the variational definition of the largest eigenvector of a
matrix, we obtain

2
3 ≤ λ1 = ẑT Xẑ = ẑT (

Y + zzT )
ẑ = ẑT Y ẑ + ẑT zzT ẑ.(1.6)

Using our assumption, ẑT Y ẑ ≤ ‖Y‖ = η1 ≤ 1/3. By Theorem 1.2

ẑT zzT ẑ = ∣∣〈ẑ, z〉∣∣2 ≤ 23

λ1

√
n

p
(1 + √

β) + ε

λ1
.(1.7)

Plugging p/n = 1504, β ≤ √
p/n = 1502 and λ1 ≥ 2/3 into equation (1.7) gives

that its right-hand side is at most 0.2315+ 3
2ε. Since by Theorem 1.2, ε = ε(n) → 0

as n → ∞, (1.7) is strictly smaller than 1/3 for a sufficiently large n. Combining
(1.6) and (1.7) we arrive at the following contradictory set of inequalities:

2
3 ≤ λ1 = ẑT Y ẑ + ẑT zT zẑ < 1

3 + 1
3 = 2

3 . �
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Note that the constant 23 appearing in equation (1.5), and consequently the fac-
tor 1504 in the corollary, are not necessarily optimal. Both may be further reduced
at the expense of more involved proofs.

Further note that if λ1(X) is bounded away from zero as p,n → ∞, then for
α > 1, equation (1.5) implies that 〈ẑ, z〉 → 0. Namely, in this case the output of Al-
gorithm 1 is nearly orthogonal to z. Such an empirical behavior of λ1 was observed
in our experimental results; see Figure 4.

We prove Theorem 1.2 using the next result, which itself may be of interest as
it bounds the value of SDP (1.2). Recall that the SDP solution is highly nonlinear
in its inputs, and therefore no closed-form explicit expression is known for the
solution X or the SDP value 〈�̂,X〉.

THEOREM 1.4 (SDP value). Assume (a)–(c). Then there exists ζ = ζ(n) → 0
such that with probability tending to one as (n,p, k) → ∞, every solution X of
SDP (1.2) satisfies

(1 − ζ )

(
1 + p

n

)
≤ 〈�̂,X〉 ≤ (1 + ζ )

(
1 +

√
p

n
+ √

β

)2

.(1.8)

For α > 1, the ratio between the upper and lower bounds in (1.8) is at most
1 + O(ζ +

√
n
p
(1 + √

β)) and tends to one as p,n → ∞.

For the important regime α = 1, we can use Theorem 1.4 to sharpen our con-
clusion from Theorem 1.2 and show that with probability tending to one, not only
X �= zzT , but X is not even rank one. We arrive at this conclusion by combining
Theorem 1.4 with the next theorem.

THEOREM 1.5. Assume (a)–(c), and in addition α = 1, c > 20 and k/

(p/ log2 p) → 0. Then with probability tending to one as (n,p, k) → ∞, every
rank-one matrix Y = yyT that is feasible for SDP (1.2) satisfies

〈�̂, Y 〉 ≤ 8

9
· p

n
.(1.9)

To see that the solution X of SDP (1.2) is indeed not rank one, we compare
the upper bound in (1.9) with the (larger) lower bound in (1.8), namely, 〈�̂, Y 〉 ≤
8
9 · p

n
< (1 − ζ )(1 + p

n
) ≤ 〈�̂,X〉.7

In conclusion, Theorems 1.2–1.5 suggest that the standard SDP-based approach
(provided by Algorithm 1) is not significantly more effective than the simpler,
light-weight diagonal thresholding. In particular, for weak signal strengths, Algo-
rithm 1 does not yield a rank-one solution and hence cannot provably solve sparse

7We remark that another lower bound 〈�̂,X〉 ≥ 1 + β was proved in [6], Proposition 6.1, in a

setting similar to Theorem 1.4, but we cannot use it to derive 〈�̂, Y 〉 < 〈�̂,X〉 because 8
9

p
n could be

larger than 1 + β .
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FIG. 1. State of the art for detection and estimation in the single-spike model under various regimes
of l0-sparsity (assuming n ≈ p and omitting constant factors).

PCA up to the information limit, as previously suspected. Our conclusion is in
line with a recent, independently obtained result of Berthet and Rigollet [7], which
asserts that the existence of a polynomial-time computable statistic for reliably de-
tecting the presence of a single spike of �0-sparsity k for k/

√
n → ∞, implies a

polynomial-time algorithm for reliably detecting the presence of a planted clique
of size k′, for k′/

√
n → 0, in an otherwise random graph G(n,1/2). The latter

problem, known as the hidden clique problem in the computer science literature, is
believed to be a computationally hard task, and polynomial-time algorithms known
to date can only find a planted clique whose size k′ is at least of order

√
n [1, 2,

14, 15, 18, 19]. Furthermore, Wang et al. [38] showed that under the hidden clique
hardness assumption, in certain sparsity regimes no randomized polynomial time
algorithms can estimate the leading spiked eigenvector with optimal rate.

Our result differs from [7] in several respects. First, our results are uncon-
ditional; that is, Theorems 1.2–1.5 are not based on any computational hard-
ness assumptions, and thus remain valid even if future developments will yield
a polynomial-time algorithm for finding a hidden clique of size n0.49. Second, our
focus is on estimation and not on detection, which in general are different prob-
lems.

We summarize in Figure 1 the picture emerging from the results of Amini and
Wainwright [3], Berthet and Rigollet [7], Deshpande and Montanari [16] and our
work. Based on these results and the fact that even a sophisticated SDP-based al-
gorithm fails to estimate z for k ≥ √

n, we conclude with the following conjecture.

CONJECTURE 1.6. In the single-spike model with p/n → c, fixed signal
strength β ≤ √

p/n and �0-sparsity k = n0.5+ε for fixed ε > 0, no polynomial-
time algorithm can recover the support of z with probability tending to one as
(n,p, k) → ∞.
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Algorithm 2: Covariance thresholding
input : vectors x1, . . . ,xn ∈R

p , threshold t , sparsity level k

output: subset S ⊆ [p] of cardinality k

1 compute �̂ = 1
n

∑n
i=1 xixT

i

2 compute T ∈ R
p×p by thresholding the entries of �̂, namely,

Tij =
{

�̂ij , if |�̂ij | > t ;
0, otherwise

3 let w ∈ R
p be the leading eigenvector of T

4 let S ⊆ [p] contain the k coordinates of largest absolute value in w

Organization. In Section 2 we describe our covariance thresholding algorithm,
followed by experimental results in Section 3. In Section 4 we give a short proof
of Theorem 1.1. In Section 5 we assert preliminary facts that will be later used in
the proofs of Theorem 1.2 in Section 6, Theorem 1.4 in Section 7 and Theorem 1.5
in Section 8.

2. Covariance thresholding algorithm. Motivated by the work of Bickel and
Levina [8], we suggest Algorithm 2 for the �0-sparse PCA problem, which we call
covariance thresholding, or CT for short.

We present some intuition as to why we expect this algorithm to work. From
the definition of �̂ in (1.3), it follows easily that the off-diagonal noise entries
have expected value zero and standard deviation 1/

√
n, while for signal entries

the expected value is ±β/k with s.d. C(β)/
√

n. Consider, for example, a signal
strength β = 1, sparsity k ≤ √

n/10 (where 10 is rather arbitrary), and choose
t = 5/

√
n. Then for a noise entry to survive thresholding, it must deviate from

its mean by 5 s.d. and an analogous deviation for a signal entry to be zeroed
out. Both events happen with small constant probability; hence most noise en-
tries are zeroed and a constant fraction of signal entries survive. In fact, when
k = O(

√
n/ logp) one can easily show that CT, similar to DT, recovers the sup-

port of z. Recently, Deshpande and Montanari [16] proved that a variant of our
algorithm is consistent up to sparsity levels k = O(

√
n). Their proof method

is not directly applicable to our algorithm, but simulation results, detailed be-
low, suggest that our algorithm is also able to recover the correct support up to
k = O(

√
n). Hence, covariance thresholding is thus far the only algorithm, with

polynomial run-time, that can provably recover the support up to sparsity levels
k = O(

√
n).
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FIG. 2. Performance of DT vs. CT, n = p = 5000. y-axis is the success rate averaged over 500
runs, with signal strength β = 2, and CT parameterized with threshold t = 3/(2k).

3. Simulation results.

3.1. Covariance thresholding versus diagonal thresholding. We compare a
few algorithms under the following setup. We generate n i.i.d. samples xi from the
single-spike model (1.3) with a spike z of the form z = ( 1√

k
, 1√

k
, . . . , 1√

k
,0,0, . . . ,

0). We assume the sparsity level k is a priori known, and say that an execution of
an algorithm is successful if it returns the support of z exactly, that is, if the output
is the set {1, . . . , k}. The success rate of an algorithm in M independent execu-
tions is the number of times it is successful divided by M . In each experiment we
fix n = p and for various values of k we measure the success rate averaged over
M = 500 independent executions. Figure 2 compares the performance of our CT
algorithm to DT. It is evident from this figure that in our setting, CT outperforms
DT. Figure 3 shows the success rate of CT as a function of the sparsity level k

scaled by
√

n, plotted for five different values of n. These results reinforce our
prediction that CT works up to sparsity levels proportional to

√
n (perhaps even

slightly more).

FIG. 3. Performance of CT in proportion to k/
√

n (depicted for different k and n). y-axis is the suc-
cess rate averaged over 500 runs, with signal strength β = 2, and CT parameterized with threshold
t = 3/(2k).
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FIG. 4. Comparison of DT and SDP (Algorithm 1) for n = p = 50, β = 0.8, averaged over 100
runs. The blue dots represent the success rate of DT. The filled circles are the average of the dot
product |〈ẑ, z〉| of the SDP leading eigenvector, whereas the triangles are the largest eigenvalue of
the SDP solution, λ1(X).

3.2. SDP (Algorithm 1) versus diagonal thresholding. We run Algorithm 1
with parameters n = p = 50 and β = 0.8, averaging over M = 100 runs. We solve
the SDP in line 2 of Algorithm 1 using SeDuMi 1.2.1 [36]. Figure 4 plots the dot-
product (in absolute value) between ẑ, the output of Algorithm 1 and the planted
spike z. As expected, the dot-product gets smaller as the sparsity k increases. For
comparison, the figure plots also the recovery rate of DT, which also deteriorates as
k increases. The figure also shows the largest eigenvalue of the SDP solution X; we
remark that this value is rather close to one, even when the output of Algorithm 1
is far from z, and is certainly bounded away from 0, as assumed in the discussion
following Theorem 1.2.

4. Proof of Theorem 1.1 (Strong signal). Let ŵ1 be the leading eigenvector
of �̂, and write it as a linear combination of the spike z and some unit vector

a ⊥ z, namely, ŵ1 = gz +
√

1 − g2a. We may assume g ∈ [0,1] by negating ŵ1, if
necessary. According to [13], Theorem 4, for our setting of β >

√
c,

g = g(β)
a.s.→

√(
β2 − c

)
/
(
β2 + βc

)
as n → ∞.(4.1)

Furthermore, according to Debashis ([13], Theorem 6), the vector a ∈ R
p is

distributed uniformly on the unit sphere of dimension p − 1 of vectors in R
p or-

thogonal to z. Using this fact we prove below the following property of the entries
of a.

LEMMA 4.1. With probability tending to one, all entries of a are bounded in

absolute value by h
√

logp
p

for a suitable constant h > 0.

Lemma 4.1 implies that with probability tending to one, for all i ∈ [1, k] we

have |(ŵ1)i | ≥ g√
k
−

√
1 − g2 ·h

√
logp

p
, and for all i ∈ [k+1,p] we have |(ŵ1)i | ≤
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1 − g2 ·h

√
logp

p
. To correctly identify the support of z, it suffices to require a gap

between signal and nonsignal coordinates, namely,

g√
k

> 2h

√
1 − g2

√
logp

p
.

Solving for k and using (4.1), this inequality holds whenever k < h′p/ logp for
suitable h′ = h′(β) > 0, which in turn holds with probability tending to one, be-
cause our assumption k/κ2

n,p = k/(n/ logp) → 0 implies k/(p/ logp) → 0. This
completes the proof of Theorem 1.1.

PROOF OF LEMMA 4.1. Let {s1, . . . , sp−1} be an orthonormal basis for the
subspace of vectors in R

p orthogonal to z. Since a = (a1, . . . , ap) is uniformly

distributed in this subspace, it can be represented as a = 1
‖ξ‖

∑p−1
i=1 ξisi , where

ξ = (ξ1, ξ2, . . . , ξp−1) is a vector of i.i.d. standard Gaussians.
Fix a coordinate i ∈ {1, . . . , p}, and write its corresponding standard basis

vector as ei = ζiz +
√

1 − ζ 2
i ẽi for a unit vector ẽi ⊥ z and ζi ∈ [−1,1]. Then

ai = aT ei = aT (ζiz +
√

1 − ζ 2
i ẽi ) =

√
1 − ζ 2

i aT ẽi , which implies |ai | ≤ |aT ẽi |.
Since a and ẽi are both unit vectors in span{s1, . . . , sp−1}, our task reduces to es-
timating the inner-product between the uniformly distributed random vector a on
the (p − 1)-dimensional unit sphere and a fixed vector ẽi on the sphere. Since a is
random, we may replace ẽi with another fixed vector, say s1. Namely, aT ẽi has the
same distribution as aT s1 = ξ1/‖ξ‖. Standard tail bounds for the Gaussian and χ2

distributions (note that ‖ξ‖2 ∼ χ2
p−1) imply that |ξ1|‖ξ‖ ≤ h

√
logp

p
with probability at

least 1 − 1/p4, for a suitable constant h > 0. The lemma follows by a union bound
over all p coordinates of a. �

5. Preliminaries. In this section we record a few standard results that will be
used later in the proofs. The first is a large deviation result for a Chi-square random
variable.

LEMMA 5.1 ([24]). Let X ∼ χ2
n . For all x ≥ 0,

Pr[X ≥ n + 2
√

nx + x] ≤ e−x and Pr[X ≤ n − 2
√

nx] ≤ e−x.

The second lemma records a well-known argument about the inner-product of
two high-dimensional Gaussians.

LEMMA 5.2. Let {xi, yi}ni=1 be standard i.i.d. Gaussian random variables.
Then

∑n
i=1 xiyi is distributed like the product of two independent random vari-

ables ‖x‖ · ỹ, where x = (x1, . . . , xn), ‖x‖2 ∼ χ2
n and ỹ is a standard Gaussian.
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PROOF. For every fixed realization of x, we have xiyi ∼ N(0, x2
i ) and by the

independence of the yi’s,
n∑

i=1

xiyi ∼ N
(
0,‖x‖2) = ‖x‖ · N(0,1) := ‖x‖ · ỹ.

The lemma follows by observing that ‖x‖2 ∼ χ2
n . �

The next proposition establishes an upper bound on λmax(�̂), the maximal
eigenvalue of the sample covariance matrix �̂, in the single-spike model, in two
regimes: (i) p/nα → c for positive c,α ≥ 1 and (ii) p/n → 0. The spectrum of the
covariance matrix has been studied extensively in the literature. Specifically, both
Baik and Silverstein [5], Theorem 1.2 and Johnstone [20], Theorem 1.1, provide
the limiting behavior of λmax(�̂) for p/n → c ≥ 1 (i.e., α = 1). The regime of a
fixed p with n → ∞ which implies p/n → 0 was analyzed in [22], Chapter 3, for
example. Since we could not locate a reference for the case p/nα → c and α > 1,
or for p/n → 0 and p not necessarily fixed, we provide the following proposition.
The proof uses standard arguments and is given in Section 9.

PROPOSITION 5.3. Let �̂ be a p × p sample covariance matrix of n samples
in the k-sparse single-spike model with signal strength β > 0, arbitrary k and
either: (i) p/n → 0 or (ii) p/nα → c for positive constants c,α ≥ 1. Then there
exists an ε = ε(n) → 0 such that with probability tending to one as n → ∞,

λmax(�̂) ≤ (1 + ε)

(
1 +

√
p

n
+ √

β

)2

.(5.1)

COROLLARY 5.4. Let �̂ be a p × p sample covariance matrix of n samples
and a k-sparse spike z with signal strength β > 0. Further assume that k/n → 0.
Then there exists an ε = ε(n) → 0 such that with probability tending to one as n →
∞, for every rank-one trace-one p × p matrix Y = yyT with supp(y) ⊆ supp(z),

〈�̂, Y 〉 ≤ (1 + ε)(1 + √
β)2.

PROOF. Consider supY 〈�̂, Y 〉 where Y ranges over all matrices Y as stated
above. For each such Y = yyT , we have ‖y‖2 = ∑

i y2
i = ∑

i Yii = tr(Y ) = 1. Let
yz ∈ R

k be the projection of y ∈ R
p on the coordinates of supp(z), then ‖yz‖ =

‖y‖ = 1. Similarly, let �̂z be the k × k submatrix of �̂ corresponding to supp(z),
namely, restricting it to the first k rows and first k columns. Observe that we can
write

〈�̂, Y 〉 = tr
(
�̂yyT ) = yT �̂y = yT

z �̂zyz ≤ λmax(�̂z),

hence supY 〈�̂, Y 〉 ≤ λmax(�̂z). Now the desired upper bound on λmax(�̂z) follows
using the fact k/n → 0 from Proposition 5.3, that is, plugging p = k into (5.1). �
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Our next proposition estimates tr(�̂) and tr(�̂2) for the case β = 0 (no signal).
These estimates were derived in [25], Proposition 1, for example, but again only
for α = 1. For lack of reference we reprove it for α ≥ 1 in Section 9.

PROPOSITION 5.5. Let �̂ be a p × p sample covariance matrix of n multi-
variate Gaussian observations whose population covariance matrix is the identity.
Assume that (logp)/n → 0 as n,p → ∞. Then there exists an ε = ε(n) → 0 such
that with probability tending to one as n → ∞,

(1 − ε)p ≤ tr(�̂) ≤ (1 + ε)p,

(1 − ε)p

(
1 + p

n

)
≤ tr

(
�̂2) ≤ (1 + ε)p

(
1 + p

n

)
.

6. Proof of Theorem 1.2 (Cosine similarity). Let X be a solution to
SDP (1.2), with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and a corresponding orthonor-
mal set of eigenvectors ẑ = v1, . . . ,vp ∈ R

p . We can then write X = ∑p
i=1 λivivT

i ,
and by linearity of the Frobenius inner-product, 〈�̂,X〉 = ∑p

i=1 λivT
i �̂vi . Using

the simple observations vT
i �̂vi ≤ λmax(�̂) (by the variational characterization of

eigenvalues) and
∑

i λi = tr(X) = 1, we get

〈�̂,X〉 =
p∑

i=1

λivT
i �̂vi ≤ λ1ẑT �̂ẑ + (1 − λ1) · λmax(�̂).(6.1)

Let us first provide a high-level description of the proof idea. We can bound
〈�̂,X〉 from below (using Theorem 1.4, which we prove in Section 7, and as men-
tioned earlier is used here) and λmax(�̂) from above (using Proposition 5.3) both
by roughly p

n
. Now suppose λ1 is not too small; then on the right-hand side of (6.1),

a large contribution must come from the first term λ1ẑT �̂ẑ. But the quadratic form
ẑT �̂ẑ has small value in the direction ẑ = z (using Corollary 5.4), and thus ẑ and
z cannot be too close to each other.

We now proceed to the detailed proof, starting with a lower bound on λ1ẑT �̂ẑ.
Assume henceforth that the high-probability event asserted by Theorem 1.4 in-
deed occurs; namely, inequality (1.8) holds. Similarly Corollary 5.4 implies that
inequality (5.1) holds. Plugging these two bounds into (6.1) and using λ1 > 0, we
get

λ1ẑT �̂ẑ ≥ (1 − ζ )
p

n
− (1 − λ1)(1 + ε)

(
1 +

√
p

n
+ √

β

)2

≥ p

n
(λ1 − ζ − ε) − (1 + ε)

(
2
√

p

n
+ 1 + √

β

)
(1 + √

β).

Observe that
√

p
n

≥ 1
1+ε1

for suitable ε1 → 0 and sufficiently large n,p. In addi-

tion, assumption (b) yields that β ≤
√

p
n

≤ (1 + ε1)
p
n

. For suitable ε2 = O(ζ + ε +
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ε1), we get

λ1ẑT �̂ẑ ≥ p

n
(λ1 − ε2) − (4 + ε2)

√
p

n
(1 + √

β).(6.2)

Next, we analyze the quadratic form ẑT �̂ẑ in terms of γ = 〈ẑ, z〉 ∈ [−1,1].
Write ẑ = γ z +

√
1 − γ 2s, where s is a unit vector orthogonal to z, and recall that

our goal is to upper bound γ 2. Using Cauchy–Schwarz and the triangle inequality,

ẑT �̂ẑ ≤ ‖ẑ‖ · ‖�̂ẑ‖ = 1 · ∥∥�̂(
γ z +

√
1 − γ 2s

)∥∥
(6.3)

≤ |γ | · ‖�̂z‖ +
√

1 − γ 2‖�̂s‖.
Since �̂ is PSD, it can be written as �̂ = BT B for some matrix B whose spectral

norm is ‖B‖ = ‖BT ‖ =
√

λmax(�̂). Assume henceforth that the high-probability

event asserted by Corollary 5.4 indeed occurs, and we have ‖Bz‖2 = zT �̂z =
〈�̂, zzT 〉 ≤ (1+ε3)(1+√

β)2 for suitable ε3 → 0. Using Proposition 5.3 similarly

yields ‖B‖2 = λmax(�̂) ≤ (1 + ε4)(1 +
√

p
n

+√
β)2 for suitable ε4 → 0. Together,

for suitable ε5 = O(ε3 + ε4 + ε1),

‖�̂z‖ ≤ ∥∥BT
∥∥ · ‖Bz‖ ≤ (3 + ε5)

√
p

n
(1 + √

β),

and similarly

‖�̂s‖ ≤ λmax(�̂) · ‖s‖ ≤ p

n
(1 + ε4) + (4 + ε5)

√
p

n
(1 + √

β).

Plugging these into (6.3) and using |γ | ≤ 1 and
√

1 − γ 2 ≤ 1 − γ 2

2 ≤ 1, we have

ẑT �̂ẑ ≤
(

1 − γ 2

2
+ ε4

)
p

n
+ (7 + 2ε5)

√
p

n
(1 + √

β).(6.4)

Now combining this upper bound (6.4) with our lower bound 6.2 (after dividing
by λ1), gives (

1 − ε2

λ1

)
p

n
− 4 + ε2

λ1

√
p

n
(1 + √

β)

≤
(

1 − γ 2

2
+ ε4

)
p

n
+ (7 + 2ε5)

√
p

n
(1 + √

β),

and by further manipulation,

γ 2

2
− ε2

λ1
− ε4 ≤ 11 + 2ε5 + ε2

λ1

√
n

p
(1 + √

β).

For sufficiently large n,p, this yields the bound on γ 2 = |〈ẑ, z〉|2 asserted in (1.5),
and completes the proof of Theorem 1.2.
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7. Proof of Theorem 1.4 (SDP value). We start with the upper bound on
〈�̂,X〉. The idea is to drop the constraint ‖X‖S ≤ k from SDP (1.2), and show
that the value of the resulting SDP, which can only be bigger, is actually λmax(�̂),
and is thus bounded by Proposition 5.3.

Formally, let X be a solution to SDP (1.2), and let us argue that (with probabil-
ity 1)

〈�̂,X〉 ≤ sup
{〈�̂, Y 〉 :Y ∈ Sp

+, tr(Y ) = 1
} = λmax(�̂).

Indeed, the inequality holds because we have just relaxed SDP (1.2). The equality
holds by the following standard argument. Writing Y = ∑

i μiyiyT
i , where {μi}i

are the eigenvectors of Y and {yi}i is a corresponding orthonormal eigenbasis, we
have

〈�̂, Y 〉 = ∑
i

μiyT
i �̂yi ≤ λmax(�̂) · ∑

i

μi = λmax(�̂) · tr(Y )

= λmax(�̂),

and equality is achieved when maximizing over all relevant Y , by taking Y = y1yT
1

to be a rank-one matrix where y1 is a leading eigenvector of �̂.
To conclude the upper bound asserted in the theorem, we combine the above

with Proposition 5.3, and get that for a suitable ε = ε(n) → 0 with probability
tending to one as n → ∞,

〈�̂,X〉 ≤ λmax(�̂) ≤ (1 + ε)

(
1 +

√
p

n
+ √

β

)2

.

We turn to proving the lower bound on 〈�̂,X〉. The idea is to consider a specific
X∗ which is feasible (but not necessarily optimal) for SDP (1.2), and compute its
objective value 〈�̂,X∗〉. Our X∗ is based on taking the nonsignal part of �̂ [which
is a (p − k) × (p − k) submatrix], padded with zeros elsewhere, and “forcing” it
to satisfy the constraints of SDP (1.2) by scaling it to be trace-one.

Formally, let X∗ = �̃/ tr(�̃), where the matrix �̃ ∈ R
p×p is given by

�̃ij =
{ 0, if i ≤ k or j ≤ k;

�̂ij , otherwise.
(7.1)

We prove below that with probability tending to one, the following inequalities
hold for a suitable ζ = ζ(n) → 0:∥∥X∗∥∥

S ≤ 2p√
n

≤ k,(7.2)

〈
�̂,X∗〉 ≥ (1 − ζ )

(
1 + p

n

)
.(7.3)

Combining this with X∗ ∈ Sp
+ and tr(X∗) = 1, which hold by construction, will

prove that with probability tending to one, X∗ is feasible and has a high-objective
value.
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Before proceeding to prove (7.3) and (7.2), we observe that the nonzeroed part
of �̃ satisfies the conditions of Proposition 5.5, as it is a (p − k) × (p − k) sample
covariance matrix of n multivariate Gaussian observations whose population co-
variance matrix is the identity, and furthermore (log(p − k))/n → 0. The concrete
bounds that we get hold for a suitable ε = ε(n) → 0 and with probability tending to
one as n → ∞, and roughly say that tr(�̃) ≈ p−k and tr(�̃2) ≈ (p−k)(1+ p−k

n
).

Let us now prove inequality (7.2). First, using Cauchy–Schwarz,

∥∥X∗∥∥
S = 1

tr(�̃)

∑
i,j>k

|�̃ij | ≤
√

(p − k)2 ∑
i,j>k �̃2

ij

tr(�̃)
= (p − k)

√
tr(�̃2)

tr(�̃)
.

By the above bounds from Proposition 5.5, with probability tending to one,√
tr(�̃2)

tr(�̃)
≤

√
(1 + ε)(p − k)(1 + (p − k)/n)

(1 − ε)(p − k)
≤

√
(1 + ε)(1/(p − k) + 1/n)

1 − ε

≤ 1 + ε

1 − ε

√
3

n
,

which together imply that ‖X∗‖S ≤ (p − k)1+ε
1−ε

√
3
n

≤ 2p√
n

≤ k.
We next prove inequality (7.3). First, we expand

〈
�̂,X∗〉 = 1

tr(�̃)

∑
i,j

�̃ij �̂ij = 1

tr(�̃)

∑
i,j

�̃2
ij = tr(�̃2)

tr(�̃)
.

By the above bounds from Proposition 5.5, with probability tending to one,

tr(�̃2)

tr(�̃)
≥ (1 − ε)(p − k)(1 + p/n)(1 − k/p)

(1 + ε)(p − k)
≥ (1 − ζ )

(
1 + p

n

)
,

for a suitable ζ = ζ(n) → 0, where we used here that k/p → 0 by assumption (c).
Altogether, we conclude that 〈�̂,X∗〉 ≥ (1 − ζ )(1 + p

n
).

Having proved inequalities (7.3) and (7.2), we conclude that with probability
tending to one, X∗ is feasible and has a high objective value, which establishes a
lower bound on the optimal SDP value 〈�̂,X〉, and completes the proof of Theo-
rem 1.4.

8. Proof of Theorem 1.5 (SDP value). Let F be the set of all vectors y whose
corresponding rank-one matrix Y = yyT is feasible for SDP (1.2), formally,

F = {
y ∈ R

p :‖y‖2 ≤ 1 and ‖y‖1 ≤ √
k
}
.

We need to prove that with probability tending to one as n → ∞, every Y = yyT

such that y ∈ F satisfies 〈�̂, Y 〉 ≤ 8
9

p
n

. At a high level, 〈�̂, Y 〉 = yT �̂y is con-
tinuous, and thus a standard approach is to discretize F with an ε-net, analyze
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every single point in F separately and apply a union bound argument. The size
of an ε-net for the unit �2-ball in p dimensions is proportional to (1/ε)p . On
the other hand, our upper bound on the probability that a fixed Y = yyT violates
〈�̂, Y 〉 ≤ 8

9
p
n

is larger than εp; see Lemma 8.2. Therefore, a naive discretization of
F fails, and we need to reduce the size of the net by using the additional constraint
‖y‖1 ≤ √

k. To this end, we approximate F by a set F̂ , whose definition uses an
�0-constraint; the idea is that an �0-bound is technically more convenient than �1.
We apply an ε-net argument to F̂ , which indirectly yields a bound for all of F .
Specifically, we define

F̂ = {
y ∈ R

p :‖y‖2 ≤ 1 and ‖y‖0 ≤ 40
√

pk
}
.

To formalize the notion of one set approximating another one, we define the r-
neighborhood of a set A ⊂R

p to be Ar = {y ∈ R
p :∃y′ ∈ A,‖y − y′‖ ≤ r}.

LEMMA 8.1. The sets F̂ ,F defined above satisfy F ⊆ F̂1/40.

PROOF. Fix y ∈ F , and let I = {i ∈ [p] : |yi | ≥ 1/(40
√

p)}. Since ‖y‖1 ≤ √
k,

the size of I is at most |I | ≤ 40
√

kp. Now define y′ ∈ R
p as follows: y′

i = yi if i ∈
I , and y′

i = 0 otherwise. By construction, y′ ∈ F̂ and ‖y′ −y‖2 ≤ p ·1/(40
√

p)2 =
1/402. �

We proceed to the discretization of F̂ , which uses the following notation. For
B ⊆ R

p and a subset of the coordinates I ⊆ [p], let BI ⊆ B denote the vectors
in B whose support is contained in I . Recall that an ε-net of B ⊆ R

p is a subset
N ⊆ B satisfying B ⊆ Nε and that for all x �= y ∈ N , ‖x − y‖ > ε. Setting I =
{I ⊆ [p] : |I | = 40

√
pk}, clearly F̂ = ⋃

I∈I F̂I . Let NI be an ε-net of F̂I with
ε = 1/40, and let Ñ be the union of all these nets, that is,

Ñ = ⋃
I∈I

NI .

Then F̂ = ⋃
I∈I F̂I ⊆ ⋃

I∈I(NI )1/40 ⊆ Ñ1/40. Now using Lemma 8.1 and the tri-
angle inequality, we get that F ⊆ F̂1/40 ⊆ Ñ1/20. The key to completing the proof
is to show that for all sufficiently large n,

Pr
[∀ỹ ∈ Ñ, ỹT �̂ỹ ≤ 2(1 + β)

] ≥ 1 − e−n/10.(8.1)

Before proving this inequality, let us rely on it to complete the proof of The-
orem 1.5. Assume the high-probability event in (8.1) indeed occurs, and simi-

larly for Proposition 5.3, hence λmax(�̂) ≤ (1 + ε)(1 +
√

p
n

+√
β)2. Now because

F ⊆ Ñ1/20, for every y ∈ F there exists ỹ ∈ Ñ such that a = y − ỹ is of length
‖a‖ ≤ 1/20, and therefore for Y = yyT ,

〈�̂, Y 〉 = yT �̂y = ỹT �̂ỹ + 2aT �̂ỹ + aT �̂a.(8.2)
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The assumption we made using (8.1) implies that ỹT �̂ỹ ≤ 2(1 + β). To bound the
two summands, observe that for all u,v ∈ R

p we have uT �̂v ≤ ‖u‖‖v‖λmax(�̂).
Plugging all these into (8.2), we get

〈�̂, Y 〉 ≤ 2(1 + β) + (1 + ε)

(
2

20
+ 1

202

)(
1 +

√
p

n
+ √

β

)2

.

Recall that β ≤
√

p
n

and that for sufficiently large n,p we have p
n

≥ 20. Hence by
straightforward manipulations, we conclude that as (n,p, k) → ∞, with probabil-
ity tending to one 〈�̂, Y 〉 ≤ 8

9
p
n

, which proves Theorem 1.5.
It remains to prove (8.1), which we do via a union bound argument, using the

two lemmas below. The first lemma estimates the probability that an arbitrary fixed
y ∈ Ñ violates the inequality yT �̂y ≤ 2(1+β), and the second one bounds the size
of the ε-net Ñ .

LEMMA 8.2. Under the conditions of Theorem 1.5, there exists an integer
n0 > 0, such that for every n ≥ n0 and every y ∈ R

p of length at most 1 (in partic-
ular, every y ∈ Ñ ),

Pr
[
yT �̂y ≥ 2(1 + β)

] ≤ e−n/9.

PROOF. Fix y ∈R
p with ‖y‖ ≤ 1, and expand

yT �̂y = 1

n

n∑
i=1

yT xixT
i y = 1

n

n∑
i=1

〈xi ,y〉2.

Recall from (1.3) that xi = √
βuiz + ξ i , where ξ i is a vector of independent stan-

dard Gaussian random variables, and ui is also a standard Gaussian. Therefore,

〈xi ,y〉 = 〈ξ i ,y〉 + ui

√
β〈y, z〉.(8.3)

The first term 〈ξ i ,y〉 has distribution N(0,‖y‖2). Since ui is independent of ξ i ,
the distribution of 〈xi ,y〉 is just N(0,‖y‖2 + β〈y, z〉2). Furthermore, since y is
fixed and the ξ i’s and ui’s are all independent, the random variables 〈xi ,y〉 for
i = 1, . . . , n are i.i.d., and thus

n∑
i=1

〈xi ,y〉2 ∼ (‖y‖2 + β〈y, z〉2)
χ2

n .

Lemma 5.1 with x = n/9 implies that Pr[χ2
n ≥ 2n] ≤ e−n/9. We conclude that with

probability at least 1 − e−n/9,

〈
�̂,yyT 〉 ≤ 1

n
· 2n

(‖y‖2 + β〈y, z〉2) ≤ 2(1 + β),

where the second inequality uses the Cauchy–Schwarz inequality. �
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LEMMA 8.3. The ε-net Ñ has size |Ñ | ≤ p20
√

pk .

PROOF. By the definition of Ñ and the fact that |NI | is the same for all I , we
can fix arbitrary I ∈ I and write

|Ñ | ≤
(

p

40
√

pk

)
|NI |.(8.4)

We thus need to bound |NI |. By definition, NI is contained in an axis-aligned
subspace of Rp of dimension p′ = 40

√
pk, and we can use the following standard

volume argument. Ignoring henceforth all coordinates outside I , let Br (x) be a
closed ball (in R

p′
) of radius r > 0 centered at x. Since NI is an ε-net (of F̂I ),

for every two distinct points in it, x �= y ∈ NI , the corresponding balls Bε/2(x) and
Bε/2(y) are disjoint (as otherwise ‖x−y‖ ≤ ε). In addition, the union of these balls
Bε/2(x) over all x ∈ NI is contained in B1+ε/2(0) (because all x ∈ NI ⊆ F̂I have
length at most 1). Recalling that the Euclidean volume of a ball of radius r > 0
in dimension d grows with r proportionally to rd , and plugging in ε = 1/40, we
obtain

|NI | ≤ vol(B1+ε/2(0))

vol(Bε/2(0))
≤

(
1 + ε/2

ε/2

)p′
= 8140

√
pk.

Plugging into (8.4), we get |Ñ | ≤ (
ep

40
√

pk
)40

√
pk · 8140

√
pk ≤ p20

√
pk . �

Finally, observe that (8.1) indeed follows from Lemmas 8.2 and 8.3 by a union
bound,

Pr
[∃ỹ ∈ Ñ, ỹT �̂ỹ ≥ 2(1 + β)

] ≤ p20
√

pk · e−n/9 ≤ e−n/10,

where the last inequality follows from the assumption in Theorem 1.5 that
k/(p/ log2 p) → 0 and that p/n → c. This completes the proof of (8.1) and of
Theorem 1.5.

9. Deferred proofs from Section 5 (preliminaries).

PROOF OF PROPOSITION 5.3. Let us rotate R
p so that the spike z becomes

the first standard basis vector e1. Obviously, λmax(�̂) would not change at all, and
since the normal distribution is rotation invariant, the noise would still be normally
distributed. In effect, we may assume henceforth that z = e1. Recalling from (1.3)
that the samples are given by xi = √

βuiz + ξ i , we can write �̂ = 1
n

∑n
i=1 xixT

i as

�̂ = 1

n
(
√

βU + �)(
√

βU + �)T ,

where U is a p × n matrix whose first row is (u1, . . . , un) and the remaining rows
are zero (recall z = e1), and � is an p × n matrix whose ith column is ξ i . Let
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‖A‖ = √
λmax(AT A) be the spectral norm of a matrix A. Using also ‖A‖ = ‖AT ‖

and the triangle inequality,

λmax(�̂) = 1

n
‖√

βU + �‖2 ≤ 1

n

(√
β‖U‖ + ‖�‖)2

.(9.1)

The matrix �T � follows a Wishart distribution (note that the roles of p and n

are reversed). Therefore by [17], Theorem 2, which applies to the regime p/n → 0
and p/n → ∞, and by [20], Theorem 1.1, which applies to p/n → c ∈ (0,∞),
we know that with probability tending to one,

‖�‖2 = λmax
(
�T �

) ≤ (1 + ε1)(
√

p + √
n)2,

for some ε1 = ε1(n) → 0. Since UT U has rank one, ‖U‖2 = λmax(U
T U) =

tr(UT U) = ∑n
i=1 u2

i ∼ χ2
n . Lemma 5.1 with x = 3 logn implies that with prob-

ability at least 1 − 1/n3,

‖U‖2 ≤
(

1 + O

(
logn

n

))
n,

and thus with probability tending to one, ‖U‖ ≤ (1 + ε2)
√

n for some ε2 =
ε2(n) → 0.

Plugging these bounds into (9.1), we conclude that with probability tending to
one as n → ∞,

λmax(�̂) ≤
[
(1 + ε2)

√
β + (1 + ε1)

(
1 +

√
p

n

)]2

≤
[
(1 + ε1 + ε2)

(√
β + 1 +

√
p

n

)]2

,

which completes the proof of Proposition 5.3. �

PROOF OF PROPOSITION 5.5. Starting with tr(�̂), observe that �̂ii ∼ 1
n
χ2

n .
Lemma 5.1 with x = 5 lnp implies that with probability at least 1 − 1/p5, χ2

n ≤
(1 + ε1)n for ε1 = O(

√
(logp)/n) → 0. Taking a union bound over i = 1, . . . , p,

we obtain that with probability at least 1 − 1/p4, all entries �̂ii ∈ [1 − ε1,1 + ε1],
which implies

tr(�̂) =
p∑

i=1

�̂ii ∈ [
(1 − ε1)p, (1 + ε1)p

]
.

We now turn to bound

tr
(
�̂2) =

p∑
i,j=1

�̂2
ij =

p∑
i=1

�̂2
ii +

p∑
i=1

∑
j �=i

�̂2
ij .
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By the preceding paragraph, with probability at least 1 − 1/p4,
∑p

i=1 �̂2
ii ∈

[(1 − ε1)
2p, (1 + ε1)

2p]. Using the notation of (1.3), we write off-diagonal en-
tries in �̂ as �̂ij = 1

n

∑n
s=1 ξ siξ sj := 1

n
ρT

i ρj , where ρi = (ξ si)
n
s=1, and notice that

ρ1, . . . ,ρp are independent.
Now fix i and condition on ρi . Then Lemma 5.2 implies that each off-diagonal

entry along row i is distributed �̂ij ∼ 1
n
‖ρi‖ · ŷj , ŷj ∼ N(0,1). Moreover the

ŷj ’s (for different j �= i) are independent, hence,
∑

j �=i �̂
2
ij ∼ 1

n2 ‖ρi‖2χ2
p−1. Using

Lemma 5.1 with x = 4 logp, with probability at least 1 − 1/p4,

∑
j �=i

�̂2
ij ∈

[
(1 − ε2)(p − 1) · 1

n2 ‖ρi‖2, (1 + ε2)(p − 1) · 1

n2 ‖ρi‖2
]
,

for ε2 = O(
√

(logp)/p).
Next, remove the conditioning on ρi (still for a fixed i), observing that ‖ρi‖2 ∼

χ2
n . Lemma 5.1 with x = 4 logp then implies that with probability at least 1 −

1/p4, we have ‖ρi‖2 ∈ [(1 − ε3)n, (1 + ε3)n] for ε3 = O(
√

(logp)/n).
Finally, taking the union bound over rows i = 1, . . . , p and also the sum along

the diagonal, with probability at least 1 − 3/p3,

tr
(
�̂2) ≤ (1 + ε1)

2p + (1 + ε2)(p − 1) · 1

n2 · (1 + ε3)n ≤ (1 + ε4)p

(
1 + p

n

)
,

for a suitably chosen ε4 = ε4(n) → 0. Similarly, tr(�̂2) ≥ (1 − ε5)p(1 + p
n
) for

ε5 = ε5(n) → 0. To complete the proof of Proposition 5.5, set ε = max{ε1, ε4, ε5}.
�
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