Similarity searching, or how to find your neighbors efficiently

Robert Krauthgamer
Weizmann Institute of Science

CS Research Day for Prospective Students
May 1, 2009

Background

- Geometric spaces and techniques are useful in tackling computational problems
- Arise in diverse application areas, e.g. data analysis, machine learning, networking, combinatorial optimization
- Definition: A metric space is a set of points M endowed with distance function $\mathrm{d}_{\mathrm{M}}(\cdot, \cdot)$
- Points can model various data objects e.g. documents, images, biological sequences (or network nodes)
- Distances can model (dis)similarity between objects (or latency)
- Common examples: Euclidean, L_{p}-norms, Hyperbolic, Hamming distance, Edit distance, Earthmover distance
- Arises also in Linear and Semidefinite Programming (LP,SDP) relaxations

Similarity Searching [Basic Problem]

- Nearest Neighbor Search (NNS):
- Preprocess: a dataset S of n points
- Query: given point q, quickly find closest $a \in S$, i.e. $\operatorname{argmin}_{a \in S} d_{m}(a, q)$
- Naive solution:
- No preprocessing, query time O(n)
- Ultimate goal (holy grail):
- Preprocessing $O(n)$, and query time $O(\log n)$

- Key problem,
- Difficult in hig
- Algorithms fo
- Query time
- Query time [Indyk-Motwan

Advanced Search Preferences

Web

Did you mean: alexander

NNS in General Metrics

- Black-box model: Access to pairwise distances (only).
- Suppose M is a uniform metric
- i.e. $d(x, y)=1$ for all $x, y \in M$,

- For some queries, time $\geq \Omega(n)$, even for approximate NNS.
- Depicts difficulty of NNS for high-dimensional data
- Such data sets exist in $\mathbb{R}^{\log n}$
- Is this the only obstacle to efficient NNS?
- What about data that "looks" low-dimensional?

A Metric Notion of Dimension

- Definition: Ball $B(x, r)=$ all points within distance $r>0$ from $x \in M$.
- The dimension of M, denoted $\operatorname{dim}(M)$, is the minimum k such that every ball can be covered by 2^{k} balls of half the radius
- Defined by [Gupta-K.-Lee'03], inspired by [Assouad'83, Clarkson'97].
- Call a metric doubling if $\operatorname{dim}(M)=O(1)$
- Captures every norm on \mathbb{R}^{k}
- Robust to:
- taking subsets,
- union of sets,
- small distortion in distances, etc.

Here $2^{k} \leq 7$.

- Unlike previous suggestions based on cardinality |B(x,r)| [Plaxton-RichaRajaraman'97, Karger-Ruhl'02, Faloutsos-Kamel'94, K.-Lee'03, ...]

NNS in Doubling Metrics

- Theorem [K.-Lee'04a]: There is a simple ($1+\varepsilon$)-NNS scheme
- Query time: $(1 / \varepsilon)^{\text {O(dim(S) })} \cdot \log \Phi$. [$\Phi=\mathrm{d}_{\text {max }} / \mathrm{d}_{\text {min }}$ is spread]
- Preprocessing: n $\cdot 2^{\circ}$ (dim(s)).
- Insertion/deletion time: $2^{0(\text { dim(S)) }} \cdot \log \Phi \cdot \log \log \Phi$.
- Outperforms previous schemes [Plaxton-Richa-Rajaraman'98, Clarkson'99, Karger-Ruhl'02]
- Simpler, wider applicability, deterministic, no apriori info
- Nearly matches the Euclidean low-dim. case [Arya et al.'94]
- Explains empirical successes-it's just easy...
- Subsequent enhancements
- Optimal storage $\mathrm{O}(\mathrm{n})$ [Beygelzimer-Kakade-Langford'06]
- Also implemented and obtained very good empirical results
- Bounds independent of Φ [K.-Lee'04b, Mendel-HarPeled'05, Gottlieb-Cole'06]
- Improved for Euclidean metrics [Indyk-Naor'06, Dasgupta-Fruend'08]

Nets

- Motivation: Approximate the metric at one scale $r>0$.
- Provide a spatial "sample" of the metric space
- E.g., grids in \mathbb{R}^{2}.
- General approach:
- Choose representatives Y iteratively
- Definition: $\mathrm{Y} \subseteq \mathrm{S}$ is called an r -net if both:

1. For all $y_{1}, y_{2} \in Y, d\left(y_{1}, y_{2}\right) \geq r$ [packing]
2. For all $x \in M \backslash Y, d(x, Y)<r \quad$ [covering]

Navigating Nets

NNS scheme (vanilla version):

- Preprocessing:
- Compute a 2^{i}-net Y_{i} for all $i \in \mathbb{Z}$.
- Add "local links".
- Query algorithm:
- Iteratively go to finer nets
- Find net-point $y_{i} \in \mathbf{Y}_{i}$ closest to query

Embeddings [Basic Technique]

- An embedding of M into l_{1} is a mapping $f: M \rightarrow \mathbb{R}^{m}$
- We say f has distortion $K \geq 1$ if

$$
d_{M}(x, y) \leq\|f(x)-f(y)\|_{1} \leq K \cdot d_{M}(x, y) \quad \forall x, y \in M
$$

- Example:

Embedding into \mathbb{R}^{2} :

- Another example:
- discrete cube $\{0,1\}^{r}$ with $d(x, y)=\|x-y\|_{2}$
- under identity map: $\|x-y\|_{2} \leq\|x-y\|_{1} \leq \sqrt{ } \cdot\|x-y\|_{2}$
- distortion $=\sqrt{ } r$? Nah...

- Very powerful concept, many applications (including NNS)

A Few Embeddings Theorems

Every n-point metric embeds

- into l_{2} (thus into l_{1}) with distortion $O(\log n)$ [Bourgain'86] Tight on expanders

If M is doubling, $\sqrt{ } \mathrm{d}_{\mathrm{M}}$ embeds into l_{2} (thus into l_{1}) with distortion O(1) [Assouad'83]

Every n-point tree metric embeds

- into l_{1} isometrically
- into l_{2} with distortion
$\mathrm{O}(\log \log \mathrm{n})^{1 / 2}$ [Matousek'99]

Every doubling tree metric embeds into l_{2} with distortion O(1) [Gupta-K.-Lee'03]

Some Open Problems [Embeddings]

- Dimension reduction in l_{2} :
- Conjecture: If M is Euclidean (a subset of l_{2}) and doubling, then it embeds with distortion $\mathrm{O}(1)$ into low-dimensional l_{2} (or l_{1})
- Known: dimension $O(\log n$) where $n=\#$ points (not doubling dimension) [Johnson-Lindenstrauss'84]
- Known: Can embed metric $\sqrt{ } \mathrm{d}_{\mathrm{M}}$ [Assouad'83]
- Planar graphs:
- Conjecture: Every planar metric embeds into l_{1} with distortion $\mathrm{O}(1)$

Edit Distance [Specific Metric]

Edit Distance (ED) between two strings $x, y \in \Sigma^{d}$:

- Minimum number of character insertions / deletions / substitutions to transform one string into the other
- Extensively used, many applications, variants

Examples:
ED(and, an)=1
ED(0101010,
1010101) $=2$

Computational problems:

1. Computing ED for two input strings

- Currently, best runtime is quadratic $0\left(d^{2} / l^{\prime} \mathbf{g}^{2} \mathrm{~d}\right)$ [Masek-Paterson'80]

2. Quick approximation (near-linear time)

- Currently, best approximation is $2^{0}{ }^{(\sqrt{(d)})}$ [Andoni-Onak'08]
- Smoothed model: $\mathrm{O}(1 / \varepsilon)$ approximation in time $\mathrm{d}^{1+\varepsilon}$ [Andoni-K.'07]

3. Estimate ED in restricted computational model
a Sublinear time, data-stream model, or limited communication model
4. NNS under ED (polynomial preprocessing, sublinear query)

- Currently, best bounds are obtained via embedding into L_{1}

Ulam's metric

- Definitions:
- A string $s \in \Sigma^{d}$ is called a permutation if it consists of distinct symbols
- Ulam's metric = Edit distance on the set of permutations [Ulam'72]
- For simplicity, suppose $\Sigma=\{1, \ldots, \mathrm{~d}\}$ and "ignore" substitutions

$$
\begin{aligned}
& x=123456789 \\
& y=234657891
\end{aligned}
$$

- Motivations:
- A permutation can model ranking, deck of cards, sequence of genes, ...
- A special case of edit distance, useful to develop techniques

Embedding of permutations

Theorem [Charikar-K.'06]: Edit distance on permutations (aka
Ulam's metric) embeds into l_{1} with distortion $\mathrm{O}(\log \mathrm{d})$.
Proof. Define $f: \Sigma^{d} \rightarrow R^{|\Sigma|^{2}}$ by $\quad f_{a, b}(P)=\frac{1}{P^{-1}[a]-P^{-1}[b]}$

Intuition:

distortion bound is optimal [Andoni-K.'07]

- $\quad \operatorname{sign}\left(f_{a, b}(P)\right)$ indicates whether "a appears before b " in P
- Thus, $\left|f_{a, b}(P)-f_{a, b}(Q)\right|$ "measures" if $\{a, b\}$ is an inversion in P vs. Q

Claim 1: \|f(P)-f(Q)\|$\|_{1} \leq O(\log d) E D(P, Q)$

- Assume wlog $E D(P, Q)=2$, i.e. Q obtained from P by moving one symbol 's'
- General case then follows by triangle inequality on $P=P_{0}, P_{1}, \ldots, P_{t}=Q$ namely $\|f(P)-f(Q)\|_{1} \leq \sum_{j=1}{ }^{t}\left\|f\left(P_{j}\right)-f\left(P_{j-1}\right)\right\|_{1}$
- Total contribution
- From coordinates where $s \in\{a, b\}: \leq 2 \sum_{k}(1 / k) \leq \mathrm{O}(\log d)$
- From other coordinates: $\quad \leq \sum_{k} k(1 / k-1 /(k+1)) \leq \mathrm{O}(\log \mathrm{d})$

Embedding of permutations

Theorem [Charikar-K.'06]: Edit distance on permutations (aka
Ulam's metric) embeds into l_{1} with distortion $\mathrm{O}(\log \mathrm{d})$.
Proof. Define $f: \Sigma^{d} \rightarrow R^{|\Sigma|^{2}}$ by $\quad f_{a, b}(P)=\frac{1}{P^{-1}[a]-P^{-1}[b]}$
Claim 1: $\|f(P)-f(Q)\|_{1} \leq O(\log d) E D(P, Q) \quad \checkmark$
Claim 2: $\|f(P)-f(Q)\|_{1} \geq 1 / 4 E D(P, Q)$ [alt. proof by Gopalan-Jayram-K.]

- Assume wlog that $\mathrm{P}=$ identity
- Edit Q into $\mathrm{P}=$ identity using quicksort:
- Choose a random pivot,

- Delete all characters inverted wrt to pivot
- Repeat recursively on left and right portions
- Now argue $E D(P, Q) \leq 2 \mathbb{E}[$ \#quicksort deletions $] \leq 4\|f(P)-f(Q)\|_{1}$

Surviving subsequence is increasing, thus
$E D(P, Q) \leq 2$ \#deletions

```
For every inversion (a,b) in Q:
    Pr[a deleted "by" pivot b] \leq
    \leq1/|Q-1[a]-Q-1[b]+1| \leq2 |fa,b
```


Open Problems [Sublinear Algorithms]

- Estimate in sublinear time the distance between input permutation P and the identity [testing distance to monotonicity]
- If distance $=\delta \cdot d$, use only $0(1 / \delta)$ queries to P
- An O(log d)-approximation follows from the embedding
- Actually, a factor 2-approximation is known
- Lower bound for approximation=1+ ε ?
- Question: deciding whether distance is $<\mathrm{d} / 100$ or $>\mathrm{d} / 99$ requires $\mathrm{d}^{\Omega(1)}$ queries to P ?
- Similar but for block operations [transposition distance]:
- Approximation 3 is known (exercise)
- Is there a lower bound for $1+\varepsilon$ approximation?
- Remark: distance is not known to be computable in polynomial time

Research Objectives

Two intertwined goals:

1. Understand the complexity of metric spaces from a mathematical and computational perspective

- E.g., identify geometric properties that reveal a simple underlying structure

2. Develop algorithmic techniques that exploit such characteristics

- E.g., design tools that dissect a metric into smaller pieces, or faithf "y pnvert them into simpler metrics

Concrete directions:

- Find new NNS algorithms tor different metrics (in particular for highdimension)
- Classify and characterize metric spaces via embeddings

