Similarity searching, or how to find your neighbors efficiently

Robert Krauthgamer

Weizmann Institute of Science

CS Research Day for Prospective Students May 1, 2009

Background

 Geometric spaces and techniques are useful in tackling computational problems

 Arise in diverse application areas, e.g. data analysis, machine learning, networking, combinatorial optimization

Definition: A metric space is a set of points M endowed with distance function d_M(·,·)

- Points can model various data objects e.g. documents, images, biological sequences (or network nodes)
- Distances can model (dis)similarity between objects (or latency)
- Common examples: Euclidean, L_p-norms, Hyperbolic, Hamming distance, Edit distance, Earthmover distance
- Arises also in Linear and Semidefinite Programming (LP,SDP) relaxations

Similarity Searching [Basic Problem]

Nearest Neighbor Search (NNS):

- Preprocess: a dataset S of n points
- **Query:** given point q, quickly find closest $a \in S$, i.e. argmin_{$a \in S}$ d_M(a,q)</sub>

Naive solution:

No preprocessing, query time O(n)

Ultimate goal (holy grail):

Preprocessing O(n), and query time O(log n)

I	Key problem,	Coode alexandr Search Advanced Search
	Difficult in hig	Preferences
	 Algorithms for 	Web
	 Query time 	
	 Query time 	Did you mean: <u>alexander</u>
	[Indyk-Motwan	

NNS in General Metrics

- Black-box model: Access to pairwise distances (only).
- Suppose M is a uniform metric
 i.e. d(x,y) = 1 for all x,y∈M,

- Depicts difficulty of NNS for high-dimensional data
 - Such data sets exist in Rlog n
 - Is this the only obstacle to efficient NNS?
 - What about data that "looks" low-dimensional?

■ For some queries, time ≥Ω(n), even for approximate NNS.

A Metric Notion of Dimension

- Definition: Ball B(x,r) = all points within distance r>0 from $x \in M$.
- The dimension of M, denoted dim(M), is the minimum k such that every ball can be covered by 2^k balls of half the radius
 - Defined by [Gupta-K.-Lee'03], inspired by [Assouad'83, Clarkson'97].
 - Call a metric doubling if dim(M) = O(1)
 - Captures every norm on R^k

Robust to:

- taking subsets,
- union of sets,
- small distortion in distances, etc.
- Unlike previous suggestions based on cardinality |B(x,r)| [Plaxton-Richa-Rajaraman'97, Karger-Ruhl'02, Faloutsos-Kamel'94, K.-Lee'03, …]

Here $2^k \leq 7$.

NNS in Doubling Metrics

- Theorem [K.-Lee'04a]: There is a simple (1+ε)-NNS scheme
 - Query time: $(1/\epsilon)^{O(\dim(S))} \cdot \log \Phi$. $[\Phi = d_{max}/d_{min} \text{ is spread}]$
 - Preprocessing: n · 2^{O(dim(S))}.
 - □ Insertion/deletion time: $2^{O(\dim(S))} \cdot \log \Phi \cdot \log \log \Phi$.
- Outperforms previous schemes [Plaxton-Richa-Rajaraman'98, Clarkson'99, Karger-Ruhl'02]
 - Simpler, wider applicability, deterministic, no apriori info
 - Nearly matches the Euclidean low-dim. case [Arya et al.'94]
 - Explains empirical successes—it's just easy...

Subsequent enhancements

- Optimal storage O(n) [Beygelzimer-Kakade-Langford'06]
 - Also implemented and obtained very good empirical results
- □ Bounds independent of Φ [K.-Lee'04b, Mendel-HarPeled'05, Gottlieb-Cole'06]
- Improved for Euclidean metrics [Indyk-Naor'06, Dasgupta-Fruend'08]

Nets

- Motivation: Approximate the metric at one scale r>0.
 - Provide a spatial "sample" of the metric space
 - E.g., grids in \mathbb{R}^2 .

N/

• General approach:

- Choose representatives Y iteratively
- **Definition:** Y⊆S is called an r-net if both:
 - 1. For all $y_1, y_2 \in Y$, $d(y_1, y_2) \ge r$ [packing] 2. For all $x \in M \setminus Y$, d(x, Y) < r [covering]

Navigating Nets

NNS scheme (vanilla version):

Preprocessing:

- Compute a 2^{i} -net Y_{i} for all $i \in \mathbb{Z}$.
- Add "local links".

Query algorithm:

- Iteratively go to finer nets
- Find net-point $y_i \in Y_i$ closest to query

From a 2ⁱ-net point to *nearby* 2ⁱ⁻¹-net points $d(q,y_i) \le OPT+2^i \implies d(y_i,y_{i-1}) \le 2OPT+2^i+2^{i-1}$

Thus: # "local" links $\leq 2^{O(\dim(S))}$.

Embeddings [Basic Technique]

- An embedding of M into l_1 is a mapping f: $M \to \mathbb{R}^m$
 - We say f has distortion K≥1 if
 d_M(x,y) ≤ ||f(x)-f(y)||₁ ≤ K ⋅ d_M(x,y) ∀x,y∈M

Very powerful concept, many applications (including NNS)

A Few Embeddings Theorems

Every n-point *metric* embeds

- into l₂ (thus into l₁) with
 distortion O(log n) [Bourgain'86]
- Tight on expanders

Every n-point tree metric embeds

- into l₁ isometrically
- into l₂ with distortion

O(loglog n)^{1/2} [Matousek'99]

If M is *doubling*, $\sqrt{d_M}$ embeds into l_2 (thus into l_1) with distortion O(1) [Assouad'83] Every doubling tree metric embeds into l_2 with distortion O(1) [Gupta-K.-Lee'03]

Some Open Problems [Embeddings]

Dimension reduction in *l*₂:

- **Conjecture:** If M is Euclidean (a subset of l_2) and doubling, then it embeds with distortion O(1) into *low-dimensional* l_2 (or l_1)
- Known: dimension O(log n) where n=# points (not doubling dimension) [Johnson-Lindenstrauss'84]
- Known: Can embed metric √d_M [Assouad'83]

Planar graphs:

• **Conjecture:** Every planar metric embeds into l_1 with distortion O(1)

Edit Distance [Specific Metric]

Edit Distance (ED) between two strings $x, y \in \Sigma^d$:

- Minimum number of character insertions / deletions / substitutions to transform one string into the other
- Extensively used, many applications, variants

Computational problems:

- 1. Computing ED for two input strings
 - Currently, best runtime is quadratic O(d²/log² d) [Masek-Paterson'80]
- 2. Quick approximation (near-linear time)
 - Currently, best approximation is $2^{O(\sqrt{d})}$ [Andoni-Onak'08]
 - Smoothed model: $O(1/\epsilon)$ approximation in time $d^{1+\epsilon}$ [Andoni-K.'07]
- 3. Estimate ED in restricted computational model
 - Sublinear time, data-stream model, or limited communication model
- 4. NNS under ED (polynomial preprocessing, sublinear query)
 - Currently, best bounds are obtained via embedding into L₁

Examples: ED(and , an)=1 ED(0101010, 1010101) = 2

Ulam's metric

Definitions:

- A string $s \in \Sigma^d$ is called a *permutation* if it consists of distinct symbols
- Ulam's metric = Edit distance on the set of permutations [Ulam'72]
- For simplicity, suppose $\Sigma = \{1, \dots, d\}$ and "ignore" substitutions

Motivations:

- A permutation can model ranking, deck of cards, sequence of genes, ...
- A special case of edit distance, useful to develop techniques

Embedding of permutations

Theorem [Charikar-K.'06]: Edit distance on permutations (aka Ulam's metric) embeds into l_1 with distortion O(log d).

Proof. Define $f: \Sigma^d \to R^{|\Sigma|^2}$ by $f_{a,b}(P) = \frac{1}{P^{-1}[a] - P^{-1}[b]}$

Intuition:

distortion bound is optimal [Andoni-K.'07]

- sign(f_{a,b}(P)) indicates whether "a appears before b" in P
- Thus, |f_{a,b}(P)-f_{a,b}(Q)| "measures" if {a,b} is an inversion in P vs. Q

Claim 1: $||f(P)-f(Q)||_1 \le O(\log d) ED(P,Q)$

Assume wlog ED(P,Q)=2, i.e. Q obtained from P by moving one symbol 's'

- □ General case then follows by triangle inequality on $P=P_0, P_1, ..., P_t=Q$ namely $||f(P)-f(Q)||_1 \le \sum_{j=1}^t ||f(P_j)-f(P_{j-1})||_1$
- Total contribution
 - From coordinates where $s \in \{a, b\}$: $\leq 2\sum_{k} (1/k) \leq O(\log d)$
 - From other coordinates: $\leq \sum_{k} k(1/k 1/(k+1)) \leq O(\log d)$

Embedding of permutations

Theorem [Charikar-K.'06]: Edit distance on permutations (aka Ulam's metric) embeds into l_1 with distortion O(log d). Proof. Define $f: \Sigma^d \to R^{|\Sigma|^2}$ by $f_{a,b}(P) = \frac{1}{P^{-1}[a] - P^{-1}[b]}$

Claim 1: $||f(P)-f(Q)||_1 \le O(\log d) ED(P,Q) \checkmark$

Claim 2: $\|f(P)-f(Q)\|_1 \ge \frac{1}{4} ED(P,Q)$ [alt. proof by Gopalan-Jayram-K.]

- Assume wlog that P=identity
- Edit Q into P=identity using quicksort:
 - Choose a random pivot,
 - Delete all characters inverted wrt to pivot
 - Repeat recursively on left and right portions

Surviving subsequence is increasing, thus ED(P,Q) ≤ 2 #deletions For every inversion (a,b) in Q: Pr[a deleted "by" pivot b] \leq $\leq 1 / |Q^{-1}[a] - Q^{-1}[b] + 1| \leq 2 |f_{a,b}(P) - f_{a,b}(Q)|$

pivot

Q= 234657891

Open Problems [Sublinear Algorithms]

- Estimate in sublinear time the distance between input permutation P and the identity [testing distance to monotonicity]
 - If distance = $\delta \cdot d$, use only $\tilde{O}(1/\delta)$ queries to P
 - An O(log d)-approximation follows from the embedding
 - Actually, a factor 2-approximation is known

Lower bound for approximation=1+ε?

 Question: deciding whether distance is <d/100 or >d/99 requires d^{Ω(1)} queries to P?

Similar but for block operations [transposition distance]:

- Approximation 3 is known (exercise)
- Is there a lower bound for $1+\varepsilon$ approximation?
- Remark: distance is not known to be computable in polynomial time

Research Objectives

Two intertwined goals:

- 1. Understand the complexity of metric spaces from a mathematical and computational perspective
 - E.g., identify geometric properties that reveal a simple underlying structure
- 2. Develop algorithmic techniques that exploit such characteristics
 - E.g., design tools that dissect a metric into smaller pieces, or faithfully priver them into simpler metrics

Concrete directions:

- Find new NNS algorithms for different metrics (in particular for highdimension)
- Classify and characterize metric spaces via embeddings