
Similarity searching, or how to
find your neighbors efficiently

Robert Krauthgamer
Weizmann Institute of Science

CS Research Day for Prospective Students
May 1, 2009

Similarity searching, or how to find your neighbors efficiently 2

Background

Geometric spaces and techniques are useful in tackling
computational problems

Arise in diverse application areas, e.g. data analysis, machine learning,
networking, combinatorial optimization

Definition: A metric space is a set of points M endowed with
distance function dM(·,·)

Points can model various data objects e.g. documents, images, biological
sequences (or network nodes)
Distances can model (dis)similarity between objects (or latency)

Common examples: Euclidean, Lp-norms, Hyperbolic, Hamming distance,
Edit distance, Earthmover distance

Arises also in Linear and Semidefinite Programming (LP,SDP) relaxations

Similarity searching, or how to find your neighbors efficiently 3

Nearest Neighbor Search (NNS):
Preprocess: a dataset S of n points
Query: given point q, quickly find closest a∈S, i.e. argmina∈S dM(a,q)

Naive solution:
No preprocessing, query time O(n)

Ultimate goal (holy grail):
Preprocessing O(n), and query time O(log n)

Key problem, many applications, extensively studied:
Difficult in high dimension (curse of dimensionality)
Algorithms for (1+ε)-approximation in L1 and in L2:

Query time O(log n) and preprocessing nO(1/ε^2)

Query time O(n1/(1+ ε)) and preprocessing O(n1+1/(1+ ε))
[Indyk-Motwani’98, Kushilevitz-Ostrovsky-Rabani’98]

Similarity Searching [Basic Problem]

q •
a

S

Similarity searching, or how to find your neighbors efficiently 4

NNS in General Metrics
Black-box model: Access to
pairwise distances (only).
Suppose M is a uniform metric

i.e. d(x,y) = 1 for all x,y∈M,

For some queries, time≥Ω(n),
even for approximate NNS.

1

1
1

δ
q

X

Depicts difficulty of NNS for
high-dimensional data

Such data sets exist in Rlog n

Is this the only obstacle to
efficient NNS?

What about data that “looks”
low-dimensional?

a

Similarity searching, or how to find your neighbors efficiently 5

A Metric Notion of Dimension
Definition: Ball B(x,r) = all points within distance r>0 from x∈M.

The dimension of M, denoted dim(M), is the minimum k such
that every ball can be covered by 2k balls of half the radius

Defined by [Gupta-K.-Lee’03], inspired by [Assouad’83, Clarkson’97].
Call a metric doubling if dim(M) = O(1)
Captures every norm on Rk

Robust to:
taking subsets,
union of sets,
small distortion in distances, etc.
Unlike previous suggestions based on cardinality |B(x,r)| [Plaxton-Richa-
Rajaraman’97, Karger-Ruhl’02, Faloutsos-Kamel’94, K.-Lee’03, …]

Here 2k

≤

7.

Similarity searching, or how to find your neighbors efficiently 6

NNS in Doubling Metrics
Theorem [K.-Lee’04a]: There is a simple (1+ε)-NNS scheme

Query time: (1/ε)O(dim(S)) · log Φ. [Φ=dmax/dmin is spread]
Preprocessing: n · 2O(dim(S)).
Insertion/deletion time: 2O(dim(S)) · log Φ · loglog Φ.

Outperforms previous schemes [Plaxton-Richa-Rajaraman’98, Clarkson’99,
Karger-Ruhl’02]

Simpler, wider applicability, deterministic, no apriori info
Nearly matches the Euclidean low-dim. case [Arya et al.’94]
Explains empirical successes—it’s just easy…

Subsequent enhancements
Optimal storage O(n) [Beygelzimer-Kakade-Langford’06]

Also implemented and obtained very good empirical results
Bounds independent of Φ [K.-Lee’04b, Mendel-HarPeled’05, Gottlieb-Cole’06]
Improved for Euclidean metrics [Indyk-Naor’06, Dasgupta-Fruend’08]

Similarity searching, or how to find your neighbors efficiently 7

Nets

General approach:
Choose representatives Y iteratively

Definition: Y⊆S is called an r-net if both:
1. For all y1

,y2

∈

Y, d(y1

,y2

) ≥

r

[packing]
2. For all x ∈

M\Y, d(x,Y) < r

[covering]

Motivation: Approximate the
metric at one scale r>0.

Provide a spatial “sample”
of the metric space
E.g., grids in R2.

M

1/2

1/4
1/8

X

y4

y5

y3

y1

y2

r

Similarity searching, or how to find your neighbors efficiently 8

Navigating Nets

NNS scheme (vanilla version):

Preprocessing:
Compute a 2i-net Yi for all i∈Z.

Add “local links”.

From a 2i-net point to nearby 2i-1-net points
d(q,yi

)≤OPT+2i

⇒

d(yi

,yi-1

) ≤

2OPT+2i+2i-1

Thus: # ”local”

links ≤

2O(dim(S)).

Query algorithm:
Iteratively go to finer nets
Find net-point yi∈Yi closest to query q

q

q

X

Similarity searching, or how to find your neighbors efficiently 9

Embeddings [Basic Technique]
An embedding of M into l1 is a mapping f: M→ Rm

We say f has distortion K≥1 if
dM

(x,y) ≤

kf(x)-f(y)k1

≤

K·dM

(x,y)

∀x,y∈M

Example:

Another example:
discrete cube {0,1}r with d(x,y)=||x-y||2
under identity map: ||x-y||2 ≤ ||x-y||1 ≤ √r·||x-y||2
distortion = √r? Nah…

Very powerful concept, many applications (including NNS)

Tree metric:

X

Embedding into R2:

zx y

w
f(w)??

distortion=1

distortion≥4/3
f(z)=(-1,0)

f(x)=(1,0)

f(y)=(1,0)

Similarity searching, or how to find your neighbors efficiently 10

A Few Embeddings Theorems

Every n-point metric embeds
into l2 (thus into l1) with
distortion O(log n) [Bourgain’86]
Tight on expanders

Every n-point

tree metric embeds
into l1 isometrically
into l2 with distortion

O(loglog

n)1/2

[Matousek’99]

X

If M

is doubling, √dM

embeds
into l2

(thus into l1

) with
distortion O(1) [Assouad’83]

Every doubling tree metric
 embeds into l2

with distortion
O(1)

[Gupta-K.-Lee’03]

Similarity searching, or how to find your neighbors efficiently 11

Some Open Problems [Embeddings]
Dimension reduction in l2:

Conjecture: If M is Euclidean (a subset of l2) and doubling, then it
embeds with distortion O(1) into low-dimensional l2 (or l1)
Known: dimension O(log n) where n=# points (not doubling dimension)
[Johnson-Lindenstrauss’84]
Known: Can embed metric √dM [Assouad’83]

Planar graphs:
Conjecture: Every planar metric embeds into l1 with distortion O(1)

Similarity searching, or how to find your neighbors efficiently 12

Edit Distance [Specific Metric]
Edit Distance (ED) between two strings x,y∈Σd:

Minimum number of character insertions / deletions /
substitutions to transform one string into the other

Extensively used, many applications, variants

Computational problems:
1. Computing ED for two input strings

Currently, best runtime is quadratic O(d2/log2 d) [Masek-Paterson’80]
2. Quick approximation (near-linear time)

Currently, best approximation is 2O(√d) [Andoni-Onak’08]
Smoothed model: O(1/ε) approximation in time d1+ε [Andoni-K.’07]

3. Estimate ED in restricted computational model
Sublinear time, data-stream model, or limited communication model

4. NNS under ED (polynomial preprocessing, sublinear query)
Currently, best bounds are obtained via embedding into L1

Examples:
ED(and

, an)=1

ED(0101010,
1010101) = 2

Similarity searching, or how to find your neighbors efficiently 13

Ulam’s

metric

Definitions:
A string s∈Σd is called a permutation if it consists of distinct symbols

Ulam’s metric = Edit distance on the set of permutations [Ulam’72]
For simplicity, suppose Σ={1,…,d} and “ignore” substitutions

Motivations:
A permutation can model ranking, deck of cards, sequence of genes, …
A special case of edit distance, useful to develop techniques

123456789

234657891

X=

y=

Similarity searching, or how to find your neighbors efficiently 14

distortion bound is optimal [Andoni-K.’07]

Embedding of permutations

Theorem [Charikar-K.’06]:

Edit distance on permutations (aka
 Ulam’s

metric) embeds into l1

with distortion O(log d).
Proof.

Define

by

Claim 1:

||f(P)-f(Q)||1

≤

O(log

d) ED(P,Q)
Assume wlog ED(P,Q)=2, i.e. Q obtained from P by moving one symbol ‘s’

General case then follows by triangle inequality on P=P0,P1,…,Pt=Q
namely ||f(P)-f(Q)||1 ≤ ∑j=1

t ||f(Pj)-f(Pj-1)||1
Total contribution

From coordinates where s∈{a,b}: ≤ 2∑k (1/k) ≤ O(log d)

From other coordinates: ≤ ∑k k(1/k – 1/(k+1)) ≤ O(log d)

Intuition:
sign(fa,b(P)) indicates whether “a appears before b” in P
Thus, |fa,b(P)-fa,b(Q)| “measures” if {a,b} is an inversion in P vs. Q

Similarity searching, or how to find your neighbors efficiently 15

Embedding of permutations

Theorem [Charikar-K.’06]:

Edit distance on permutations (aka
 Ulam’s

metric) embeds into l1

with distortion O(log

d).
Proof.

Define

by

Claim 1:

||f(P)-f(Q)||1

≤

O(log

d) ED(P,Q) X

Claim 2:

||f(P)-f(Q)||1

≥

¼ ED(P,Q) [alt. proof by Gopalan-Jayram-K.]

Assume wlog that P=identity
Edit Q into P=identity using quicksort:

Choose a random pivot,
Delete all characters inverted wrt to pivot
Repeat recursively on left and right portions

Now argue ED(P,Q) ≤ 2 E[#quicksort deletions] ≤ 4 ||f(P)-f(Q)||1

Surviving subsequence
is increasing, thus

ED(P,Q) ≤

2 #deletions

For every inversion (a,b) in Q:
Pr[a

deleted “by”

pivot b] ≤
≤

1 / |Q-1[a]-Q-1[b]+1|

≤

2 |fa,b

(P) –

fa,b

(Q)|

234657891Q=

pivot

Similarity searching, or how to find your neighbors efficiently 16

Open Problems [Sublinear Algorithms]
Estimate in sublinear time the distance between input
permutation P and the identity [testing distance to monotonicity]

If distance = δ·d, use only Õ(1/δ) queries to P
An O(log d)-approximation follows from the embedding
Actually, a factor 2-approximation is known

Lower bound for approximation=1+ε?
Question: deciding whether distance is <d/100 or >d/99 requires dΩ(1)

queries to P?

Similar but for block operations [transposition distance]:
Approximation 3 is known (exercise)
Is there a lower bound for 1+ε approximation?
Remark: distance is not known to be computable in polynomial time

Similarity searching, or how to find your neighbors efficiently 17

Research Objectives
Two intertwined goals:
1. Understand the complexity of metric spaces from a mathematical and

computational perspective
E.g., identify geometric properties that reveal a simple underlying structure

2. Develop algorithmic techniques that exploit such characteristics
E.g., design tools that dissect a metric into smaller pieces, or faithfully convert
them into simpler metrics

Concrete directions:
Find new NNS algorithms for different metrics (in particular for high-
dimension)
Classify and characterize metric spaces via embeddings

	Similarity searching, or how to find your neighbors efficiently
	Background
	Similarity Searching [Basic Problem]
	NNS in General Metrics
	A Metric Notion of Dimension
	NNS in Doubling Metrics
	Nets
	Navigating Nets
	Embeddings [Basic Technique]
	A Few Embeddings Theorems
	Some Open Problems [Embeddings]
	Edit Distance [Specific Metric]
	Ulam’s metric
	Embedding of permutations
	Embedding of permutations
	Open Problems [Sublinear Algorithms]
	Research Objectives

