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Background

Geometric spaces and techniques are useful in tackling 
computational problems

Arise in diverse application areas, e.g. data analysis, machine learning, 
networking, combinatorial optimization

Definition: A metric space is a set of points M endowed with 
distance function dM(·,·)

Points can model various data objects e.g. documents, images, biological 
sequences (or network nodes)
Distances can model (dis)similarity between objects (or latency)

Common examples: Euclidean, Lp-norms, Hyperbolic, Hamming distance, 
Edit distance, Earthmover distance 

Arises also in Linear and Semidefinite Programming (LP,SDP) relaxations
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Nearest Neighbor Search (NNS): 
Preprocess: a dataset S of n points
Query: given point q, quickly find closest a∈S,  i.e. argmina∈S dM(a,q)

Naive solution: 
No preprocessing, query time O(n)

Ultimate goal (holy grail):
Preprocessing O(n), and query time O(log n)

Key problem, many applications, extensively studied:
Difficult in high dimension (curse of dimensionality)
Algorithms for (1+ε)-approximation in L1 and in L2:

Query time O(log n) and preprocessing nO(1/ε^2)

Query time O(n1/(1+ ε)) and preprocessing O(n1+1/(1+ ε))
[Indyk-Motwani’98, Kushilevitz-Ostrovsky-Rabani’98]

Similarity Searching [Basic Problem]

q •
a

S
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NNS in General Metrics
Black-box model: Access to 
pairwise distances (only).
Suppose M is a uniform metric 

i.e. d(x,y) = 1 for all x,y∈M,

For some queries, time≥Ω(n),  
even for approximate NNS.

1

1
1

δ
q

X

Depicts difficulty of NNS for 
high-dimensional data

Such data sets exist in Rlog n

Is this the only obstacle to 
efficient NNS? 

What about data that “looks”
low-dimensional?

a
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A Metric Notion of Dimension
Definition: Ball B(x,r) = all points within distance r>0 from x∈M.

The dimension of M, denoted dim(M), is the minimum k such 
that every ball can be covered by 2k balls of half the radius 

Defined by [Gupta-K.-Lee’03], inspired by [Assouad’83, Clarkson’97].
Call a metric doubling if dim(M) = O(1)
Captures every norm on Rk

Robust to: 
taking subsets, 
union of sets, 
small distortion in distances, etc.
Unlike previous suggestions based on cardinality |B(x,r)| [Plaxton-Richa-
Rajaraman’97, Karger-Ruhl’02, Faloutsos-Kamel’94, K.-Lee’03, …]

Here 2k

 

≤
 

7.
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NNS in Doubling Metrics
Theorem [K.-Lee’04a]: There is a simple (1+ε)-NNS scheme

Query time: (1/ε)O(dim(S)) · log Φ. [Φ=dmax/dmin is spread]
Preprocessing: n · 2O(dim(S)).
Insertion/deletion time: 2O(dim(S)) · log Φ · loglog Φ.

Outperforms previous schemes [Plaxton-Richa-Rajaraman’98, Clarkson’99, 
Karger-Ruhl’02]

Simpler, wider applicability, deterministic, no apriori info
Nearly matches the Euclidean low-dim. case [Arya et al.’94]
Explains empirical successes—it’s just easy…

Subsequent enhancements
Optimal storage O(n) [Beygelzimer-Kakade-Langford’06]

Also implemented and obtained very good empirical results
Bounds independent of Φ [K.-Lee’04b, Mendel-HarPeled’05, Gottlieb-Cole’06]
Improved for Euclidean metrics [Indyk-Naor’06, Dasgupta-Fruend’08]
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Nets

General approach:
Choose representatives Y iteratively

Definition: Y⊆S is called an r-net if both:
1. For all y1

 

,y2

 

∈
 

Y,  d(y1

 

,y2

 

) ≥
 

r
 

[packing]
2. For all x ∈

 
M\Y,  d(x,Y) < r

 
[covering]

Motivation: Approximate the 
metric at one scale r>0.

Provide a spatial “sample”
of the metric space
E.g., grids in R2.
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Navigating Nets

NNS scheme (vanilla version):

Preprocessing:
Compute a 2i-net Yi for all i∈Z. 

Add “local links”.

From a 2i-net point to nearby 2i-1-net points
d(q,yi

 

)≤OPT+2i

 

⇒
 

d(yi

 

,yi-1

 

) ≤
 

2OPT+2i+2i-1

Thus: # ”local”
 

links ≤
 

2O(dim(S)).

Query algorithm:
Iteratively go to finer nets 
Find net-point yi∈Yi closest to query q

q

q

X
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Embeddings [Basic Technique]
An embedding of M into l1 is a mapping f: M→ Rm

We say f has distortion K≥1 if
dM

 

(x,y) ≤
 

kf(x)-f(y)k1

 

≤
 

K·dM

 

(x,y)
 
∀x,y∈M

Example:

Another example: 
discrete cube {0,1}r with  d(x,y)=||x-y||2
under identity map: ||x-y||2 ≤ ||x-y||1 ≤ √r·||x-y||2
distortion = √r? Nah…

Very powerful concept, many applications (including NNS)

Tree metric:

X

Embedding into R2:

zx y

w
f(w)??

distortion=1

distortion≥4/3
f(z)=(-1,0)

f(x)=(1,0)

f(y)=(1,0)
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A Few Embeddings Theorems

Every n-point metric embeds
into l2 (thus into l1) with 
distortion O(log n) [Bourgain’86]
Tight on expanders

Every n-point
 

tree metric embeds 
into l1 isometrically
into l2 with distortion 

O(loglog
 

n)1/2

 
[Matousek’99]

X

If M
 

is doubling, √dM

 

embeds  
into l2

 

(thus into l1
 

) with 
distortion O(1) [Assouad’83]

Every doubling tree metric
 embeds into l2

 

with distortion 
O(1)

 
[Gupta-K.-Lee’03]
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Some Open Problems [Embeddings]
Dimension reduction in l2:

Conjecture: If M is Euclidean (a subset of l2) and doubling, then it 
embeds with distortion O(1) into low-dimensional l2 (or l1) 
Known: dimension O(log n) where n=# points (not doubling dimension) 
[Johnson-Lindenstrauss’84] 
Known: Can embed metric √dM [Assouad’83]

Planar graphs:
Conjecture: Every planar metric embeds into l1 with distortion O(1)
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Edit Distance [Specific Metric]
Edit Distance (ED) between two strings x,y∈Σd:

Minimum number of character insertions / deletions / 
substitutions to transform one string into the other 

Extensively used, many applications, variants

Computational problems:
1. Computing ED for two input strings

Currently, best runtime is quadratic O(d2/log2 d) [Masek-Paterson’80]
2. Quick approximation (near-linear time)

Currently, best approximation is 2O(√d) [Andoni-Onak’08]
Smoothed model: O(1/ε) approximation in time d1+ε [Andoni-K.’07]

3. Estimate ED in restricted computational model
Sublinear time, data-stream model, or limited communication model

4. NNS under ED (polynomial preprocessing, sublinear query)
Currently, best bounds are obtained via embedding into L1

Examples:
ED(and

 
, an)=1

ED(0101010,
1010101) = 2 
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Ulam’s
 

metric

Definitions: 
A string s∈Σd is called a permutation if it consists of distinct symbols

Ulam’s metric = Edit distance on the set of permutations [Ulam’72]
For simplicity, suppose  Σ={1,…,d} and “ignore” substitutions

Motivations:
A permutation can model ranking, deck of cards, sequence of genes, …
A special case of edit distance, useful to develop techniques

123456789

234657891

X=

y=
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distortion bound is optimal [Andoni-K.’07]

Embedding of permutations

Theorem [Charikar-K.’06]:
 

Edit distance on permutations (aka
 Ulam’s

 
metric) embeds into l1

 

with distortion O(log d).
Proof.

 
Define

 
by

Claim 1:
 

||f(P)-f(Q)||1
 

≤
 

O(log
 

d) ED(P,Q) 
Assume wlog ED(P,Q)=2, i.e. Q obtained from P by moving one symbol ‘s’

General case then follows by triangle inequality on P=P0,P1,…,Pt=Q
namely ||f(P)-f(Q)||1 ≤ ∑j=1

t ||f(Pj)-f(Pj-1)||1 
Total contribution

From coordinates where s∈{a,b}: ≤ 2∑k (1/k) ≤ O(log d) 

From other coordinates: ≤ ∑k k(1/k – 1/(k+1)) ≤ O(log d) 

Intuition:
sign(fa,b(P)) indicates whether “a appears before b” in P
Thus, |fa,b(P)-fa,b(Q)| “measures” if {a,b} is an inversion in P vs. Q
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Embedding of permutations

Theorem [Charikar-K.’06]:
 

Edit distance on permutations (aka
 Ulam’s

 
metric) embeds into l1

 

with distortion O(log
 

d).
Proof.

 
Define

 
by

Claim 1:
 

||f(P)-f(Q)||1
 

≤
 

O(log
 

d) ED(P,Q) X

Claim 2:
 

||f(P)-f(Q)||1
 

≥
 

¼ ED(P,Q) [alt. proof by Gopalan-Jayram-K.]

Assume wlog that P=identity
Edit Q into P=identity using quicksort:

Choose a random pivot, 
Delete all characters inverted wrt to pivot
Repeat recursively on left and right portions

Now argue  ED(P,Q) ≤ 2 E[ #quicksort deletions ] ≤ 4 ||f(P)-f(Q)||1

Surviving subsequence 
is increasing, thus 

ED(P,Q) ≤
 

2 #deletions

For every inversion (a,b) in Q:
Pr[a

 

deleted “by”
 

pivot b] ≤
≤

 
1 / |Q-1[a]-Q-1[b]+1|

 
≤

 

2 |fa,b

 

(P) –
 

fa,b

 

(Q)|

234657891Q=

pivot
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Open Problems [Sublinear Algorithms]
Estimate in sublinear time the distance between input 
permutation P and the identity [testing distance to monotonicity]

If distance = δ·d, use only Õ(1/δ) queries to P
An O(log d)-approximation follows from the embedding 
Actually, a factor 2-approximation is known 

Lower bound for approximation=1+ε?
Question: deciding whether distance is <d/100 or  >d/99 requires dΩ(1)

queries to P?

Similar but for block operations [transposition distance]:
Approximation 3 is known (exercise)
Is there a lower bound for 1+ε approximation?
Remark: distance is not known to be computable in polynomial time
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Research Objectives
Two intertwined goals:
1. Understand the complexity of metric spaces from a mathematical and 

computational perspective
E.g., identify geometric properties that reveal a simple underlying structure

2. Develop algorithmic techniques that exploit such characteristics
E.g., design tools that dissect a metric into smaller pieces, or faithfully convert 
them into simpler metrics

Concrete directions:
Find new NNS algorithms for different metrics (in particular for high-
dimension)
Classify and characterize metric spaces via embeddings 
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