Seminar on Algorithms and Geometry - Handout 3

Robert Krauthgamer

April 2, 2009

Today's topics

- Approximation algorithm for Sparsest-Cut via embedding into ℓ_{1} (continued from last time).
- Application of Sparsest-Cut to Minimum Bisection
- Distortion lower bounds for embedding a cube into ℓ_{2}
- Distortion lower bounds for embedding expanders into ℓ_{2}

Homework

1. Let $G(V, E)$ be an r-regular graph with edge-expansion $\alpha>0$, i.e. $e(S, \bar{S}) \geq \alpha|S|$ for all $S \subseteq V$ with $0<|S| \leq|V| / 2$. Show that embedding the shortest-path metric of G into ℓ_{1} requires distortion $\Omega(c \cdot \log |V|)$ where $c=c(r, \alpha)>0$ is independent of n.
Hint: Show a gap between the value of the optimal sparset-cut and that of the LP relaxation.
2. In the Multicut problem the input is a graph G and k demand-pairs $\left\{s_{1}, t_{1}\right\}, \ldots,\left\{s_{k}, t_{k}\right\}$ (similarly to Sparsest-Cut). The goal is to find a partition of the vertices $V=V_{1} \cup V_{2} \cup \cdots$ where every s_{i} must be separated from its corresponding t_{i} (separated means they belong to different parts V_{j}), so as to minimize the number of edges cut (an edge is cut if its endpoints belong to different parts). Give an algorithm that approximates the Multicut problem.
Hint: Use (repeatedly) an algorithm that approximates Sparset-Cut.
3. Let the graph $H=(V, E)$ be the discrete hypercube $\{0,1\}^{m}$ with an edge (x, y) whenever x differs from y in exactly one coordinate. Prove that for every $f: V \rightarrow \ell_{2}$,

$$
\mathbb{E}_{(x, y) \in V \times V}\|f(x)-f(y)\|^{2} \leq O(m) \mathbb{E}_{(x, y) \in E}\|f(x)-f(y)\|^{2}
$$

Note: The lefthand side has uniform distribution over all pairs, the righthand side has uniform distribution over edges.
Hint: Use the inequality for "diagonals" shown in class.

