Seminar on Algorithms and Geometry – Handout 5

Robert Krauthgamer

May 7, 2009

Today's topics

Dimension reduction in ℓ_2 The following result is known as the Johnson-Lindenstrauss lemma.

Theorem (Johnson and Lindenstrauss, 1984). For every n-point subset $X \subset \ell_2$ and every $0 < \varepsilon < 1$, there exists an embedding $f: X \to \ell_2^k$ with distortion $1 + \varepsilon$ and dimension $k = O(\varepsilon^{-2} \log n)$.

We will see two (related) proofs, based on measure concentration on the unit sphere, and on Gaussian random variables.

Reading material. For more details, see Matousek's book, and the lecture notes by Goemans and by Barvinok. The course webpage will contain exact details and links for these references.

Homework

The first question refers to the April 23 presentation about NNS in high-dimensional space (Gionis, Indyk, and Motwani, VLDB 1999). See the webpage for more details.

- 1. Recall that the space (storage) required for the bucketing method contained a term of the form $(1/\varepsilon)^d$ (for dimension d and approximation $1 + \varepsilon$). Explain what is the correct bound for $\varepsilon \geq 1$, namely, whether increasing ε by (say) factor 2 decreases the space requirement.
- 2. Prove that the $\log(n)$ term in the J-L lemma is necessary, namely: For every integer n there is an n-point subset $X \subset \ell_2$ such that every embedding with distortion 2 of X into ℓ_2^k requires $k \geq \Omega(\log n)$.