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1 Embedding into /.

Theorem 1 (Matousek 96°, based on Bourgain 85°) Let ¢ > 1 be an integer, then
1
any n-point metric space,(X; d) embeds with distortion 2q—1 into €%, where k = O(qn logn).

Proof Letp = n”a. For each j € {1...q}let p; = min{p’, 3}. Let {Aj1...4j} C X
where m = 24 - n% Inn, be chosen at random by including each element with probability p;.

Consider f, the corresponding Frechet embedding:

EX—€&" such that fj; = d(z, Aj)

We'll show using the following lemmas, that f embeds (X;d) into 5, where k = ¢-m =

1
gna logn with distortion 2q — 1.

Note thati Yo,y € X, [[f(e) = flyl < max —|fia(@) = fia@)] < d(a,y) (the last
e|l..m|,y€|l...q

inequality is implied by Fact 5 in lecture 1).
def
Define A = Tlfld(m,y)
Lemma 2 For every z,y € X exists j € [L...q] s.t Vi € [L...m] with probability &
|d(z, Aji) — d(y, 4j)| = A

Assuming the lemma, for every z,y € X exist i, s.t with probability 1 — n%:

1f(@) = fW)lloo = [fji(@) — fia(y)| = A

Applying union bound over all (72‘) pairs (z,y), we get that with probability > % for all
z,y € X, Hf(ﬂ?) - f(y)HOO >A= ng(xay)' u

Proof of Lemma 2 Define B(z,r) the ball of radius r around € X. Consider the se-
quence By = B(z,0),B; = B(y,A), By = B(z,2A), B3 = B(y,3A)... B, = B(z or y,qA).

Jj—1

Claim 3 FEzist j€[1...m] andt € [0...q — 1] such that |B;| > n ¢« and |By11| < na



Proof Idea Note that 1 < |B;| < n. Consider the partitioning of [1,n] into g intervals
1 2 —1
1,na,na,... an,n. Use counting argument for the case | B;| is increasing. Otherwise, use

the existence of t s.t |B¢| > |By1| . B

Let B; and By as in the claim. For |d(x, A;;) — d(y, A;)| to be at least A it suffices that

A, ; contains at least one point from B; and no points from the open ball B;,;. By using
the claim, we can bound the probabilities of the events to be at least % and }1 respectively.
Using the fact the events are independent we get:

P

Pr{ld(z, ;) — dly, 45)| > A] = —

Corollary 4 Every n-point metric (X;d) embeds into lo (and ly) with distortion O(log?n)

Proof Idea Consider the same embedding f as embedding into l’§ with ¢ = logn which
implies & = O(log?n) M

Remark In general Io C [j, i.e every n-point metric that embeds isometrically into Iy
also embeds isometrically into [;.

An optimal bound is obtained in the following theorem:

Theorem 5 (Bourgain 85°) Every n-point metric (X;d) embeds into ly with distortion
O(logn)

2 Sparsest Cut

The input of the Sparsest Cut problem is a graph G = (V, E) s.t |V| = n, and k pairs of
vertices called demand pairs {s1,t1},...,{sk,tx} C V. B
Given such a graph and S C V' we can define the notion of sparsity for the cut (S, S5).

Definition 6

sparsity 3 {(u,v) eE:|(u,v)NS| =1} number of edges crossing the cut

{i:|(si,t)NS| =1}  number of demand pairs separated by the cut

The objective of the Sparsest Cut problem is to find a cut S that minimizes the sparsity.
Remark A special case of the sparsest cut problem is uniform demand in which there
are (g) demand pairs (demand pair for each pair of vertices).

Denote by e(S, S) the number of edges crossing a cut S.

. _ e(5,9)
sparsity uniform demand = IS[S]

Without loss of generality |S| < % = 2 and 2 < |S| < n thus after scaling the problem is
equivalent to minimizing e(I%IS) (up to a factor of 2).
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2.1 Formulation as a Linear Program

Definition 7 A given cut (S, S) may be thought of as a Cut Metric d(-,-) defined by:

1 z€8
f(x):{O x ¢S

VU,U € V,d(u,v) = |f(u) - f(v)|
The sparsest cut problem can be formulated as the following optimization problem:

Z(u,v)eE d(u7 U)
Sob g d(sisti)

subject to: d(-,-) is a cut metric

OPT = min

2.1.1 Relaxation to a linear program

k
LP = min E d(u,v) s.t: {Z’_l (sirt:)

(uw)EE d(-,-) is a metric

Since the relaxation allows also solutions which are not a cut-metric LP < OPT.
The relaxation of the sparsest set problem is a linear program,hence it can be solved in
polynomial time.

2.1.2 Approximation of Sparsest Cut using LP relaxation

An interesting question is can we "round” a solution of the LP to a solution of the sparsest
cut problem (i.e find the corresponding cut)?

A first step of the rounding will be given by Bourgain’s theorem which establishes an
embedding of the metric d found by the LP into [; with distortion O(logn).

So exists f:V — 1 s.t Vu,v € V, d(u,v) <[ f(u) — f(v)]1 < O(logn) -d(u,v)

We get: >, vep [1f(w) = f(v)[l1 < O(logn) - LP where LP is the solution found by the
linear program relaxation. By normalization we can also meet the condition

S NG = Ft) =1

Theorem 8 For every n-point metric (X,d) that embeds isometrically to ly, there exist
a; > 0 and cut metrics 7; s.tVa,y € X d(z,y) =Y, cuTi(z,y).
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