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1 Embedding into `∞

Theorem 1 (Matousek 96’, based on Bourgain 85’) Let q ≥ 1 be an integer, then

any n-point metric space,(X; d) embeds with distortion 2q−1 into `k∞, where k = O(qn
1
q log n).

Proof Let p = n−
1
q . For each j ∈ {1 . . . q}let pj = min{pj , 12}. Let {Aj,1 . . . Aj,m} ⊆ X

where m = 24 ∙n
1
q lnn, be chosen at random by including each element with probability pj .

Consider f , the corresponding Frechet embedding:

f:X↪→`q∙m∞ such that fj,i = d(x,Aj,i)

We’ll show using the following lemmas, that f embeds (X; d) into `k∞ where k = q ∙m =

qn
1
q log n with distortion 2q − 1.

Note that: ∀x, y ∈ X, ‖f(x) − f(y‖ ≤ max
i∈[1...m],j∈[1...q]

|fj,i(x) − fj,i(y)| ≤ d(x, y) (the last

inequality is implied by Fact 5 in lecture 1).

Define Δ
def
= 1
2q−1d(x, y)

Lemma 2 For every x, y ∈ X exists j ∈ [1 . . . q] s.t ∀i ∈ [1 . . .m] with probability P12

|d(x,Aj,i)− d(y,Aj,i)| ≥ Δ

Assuming the lemma, for every x, y ∈ X exist i, j s.t with probability 1 − 1
n2
:

‖f(x)− f(y)‖∞ ≥ |fj,i(x)− fj,i(y)| ≥ Δ

Applying union bound over all
(
n
2

)
pairs (x, y), we get that with probability ≥ 1

2 for all
x, y ∈ X, ‖f(x)− f(y)‖∞ ≥ Δ = 1

2q−1d(x, y).

Proof of Lemma 2 Define B(x, r) the ball of radius r around x ∈ X. Consider the se-
quence B0 = B(x, 0), B1 = B(y,Δ), B2 = B(x, 2Δ), B3 = B(y, 3Δ) . . . Bq = B(x or y, qΔ).

Claim 3 Exist j ∈ [1 . . .m] and t ∈ [0 . . . q − 1] such that |Bt| ≥ n
j−1
q and |Bt+1| ≤ n

j
q
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Proof Idea Note that 1 ≤ |Bi| ≤ n. Consider the partitioning of [1, n] into q intervals

1, n
1
q , n

2
q , . . . n

q−1
q , n. Use counting argument for the case |Bi| is increasing. Otherwise, use

the existence of t s.t |Bt| > |Bt+1| .

Let Bt and Bt+1 as in the claim. For |d(x,Aj,i)− d(y,Aj,i)| to be at least Δ it suffices that

Aj,i contains at least one point from Bt and no points from the open ball
◦
Bt+1. By using

the claim, we can bound the probabilities of the events to be at least P3 and
1
4 respectively.

Using the fact the events are independent we get:

Pr[|d(x,Aj,i)− d(y,Aj,i)| ≥ Δ] ≥
P

12

Corollary 4 Every n-point metric (X; d) embeds into l2 (and l1) with distortion O(log
2 n)

Proof Idea Consider the same embedding f as embedding into lk2 with q = log n which
implies k = O(log2 n)

Remark In general l2 ⊆ l1, i.e every n-point metric that embeds isometrically into l2
also embeds isometrically into l1.

An optimal bound is obtained in the following theorem:

Theorem 5 (Bourgain 85’) Every n-point metric (X; d) embeds into l2 with distortion
O(log n)

2 Sparsest Cut

The input of the Sparsest Cut problem is a graph G = (V,E) s.t |V | = n, and k pairs of
vertices called demand pairs {s1, t1}, . . . , {sk, tk} ⊆ V .
Given such a graph and S ⊆ V we can define the notion of sparsity for the cut (S, S).

Definition 6

sparsity
def
=
|{(u, v) ∈ E : |(u, v) ∩ S| = 1}|
|{i : |(si, ti) ∩ S| = 1}

=
number of edges crossing the cut

number of demand pairs separated by the cut

The objective of the Sparsest Cut problem is to find a cut S that minimizes the sparsity.
Remark A special case of the sparsest cut problem is uniform demand in which there
are

(
n
2

)
demand pairs (demand pair for each pair of vertices).

Denote by e(S, S) the number of edges crossing a cut S.

sparsity uniform demand =
e(S,S)

|S|∙|S|

Without loss of generality |S| ≤ |V |
2 =

n
2 and

n
2 ≤ |S| ≤ n thus after scaling the problem is

equivalent to minimizing e(S,S)|S| (up to a factor of 2).
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2.1 Formulation as a Linear Program

Definition 7 A given cut (S, S) may be thought of as a Cut Metric d(∙, ∙) defined by:

f(x) =

{
1 x ∈ S

0 x /∈ S

∀u, v ∈ V, d(u, v) = |f(u)− f(v)|

The sparsest cut problem can be formulated as the following optimization problem:

OPT = min

∑
(u,v)∈E d(u, v)
∑k
i=1 d(si, ti)

subject to: d(∙,∙) is a cut metric

2.1.1 Relaxation to a linear program

LP = min
∑

(u,v)∈E

d(u, v) s.t:

{∑k
i=1 d(si, ti) = 1

d(∙,∙) is a metric

Since the relaxation allows also solutions which are not a cut-metric LP ≤ OPT.
The relaxation of the sparsest set problem is a linear program,hence it can be solved in
polynomial time.

2.1.2 Approximation of Sparsest Cut using LP relaxation

An interesting question is can we ”round” a solution of the LP to a solution of the sparsest
cut problem (i.e find the corresponding cut)?
A first step of the rounding will be given by Bourgain’s theorem which establishes an
embedding of the metric d found by the LP into l1 with distortion O(log n).
So exists f : V → l1 s.t ∀u, v ∈ V, d(u, v) ≤ ‖f(u)− f(v)‖1 ≤ O(log n) ∙ d(u, v)
We get:

∑
(u,v)∈E ‖f(u) − f(v)‖1 ≤ O(log n) ∙ LP where LP is the solution found by the

linear program relaxation. By normalization we can also meet the condition∑k
i=1 ‖f(si)− f(ti)‖1 = 1

Theorem 8 For every n-point metric (X, d) that embeds isometrically to l1, there exist
αi ≥ 0 and cut metrics τi s.t ∀x, y ∈ X d(x, y) =

∑
i αiτi(x, y).
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