Seminar on Algorithms and Geometry		
Lecture 2		
March 26, 2009		
Lecturer: Robert Krauthgamer	Scribe by: Liah Kor	Updated: April 1, 2009

1 Embedding into ℓ_{∞}

Theorem 1 (Matousek 96', based on Bourgain 85') Let $q \ge 1$ be an integer, then any n-point metric space, (X; d) embeds with distortion 2q-1 into ℓ_{∞}^k , where $k = O(qn^{\frac{1}{q}} \log n)$.

Proof Let $p = n^{-\frac{1}{q}}$. For each $j \in \{1 \dots q\}$ let $p_j = \min\{p^j, \frac{1}{2}\}$. Let $\{A_{j,1} \dots A_{j,m}\} \subseteq X$ where $m = 24 \cdot n^{\frac{1}{q}} \ln n$, be chosen at random by including each element with probability p_j . Consider f, the corresponding Frechet embedding:

f:X
$$\hookrightarrow \ell_{\infty}^{q \cdot m}$$
 such that $f_{j,i} = d(x, A_{j,i})$

We'll show using the following lemmas, that f embeds (X; d) into ℓ_{∞}^{k} where $k = q \cdot m = qn^{\frac{1}{q}} \log n$ with distortion 2q - 1. Note that: $\forall x, y \in X, ||f(x) - f(y)| \leq \max_{i \in [1...m], j \in [1...q]} |f_{j,i}(x) - f_{j,i}(y)| \leq d(x, y)$ (the last inequality is implied by Fact 5 in lecture 1). Define $\Delta \stackrel{def}{=} \frac{1}{2q-1}d(x, y)$

Lemma 2 For every $x, y \in X$ exists $j \in [1 \dots q]$ s.t $\forall i \in [1 \dots m]$ with probability $\frac{P}{12}$

$$|d(x, A_{j,i}) - d(y, A_{j,i})| \ge \Delta$$

Assuming the lemma, for every $x, y \in X$ exist i, j s.t with probability $1 - \frac{1}{n^2}$:

$$||f(x) - f(y)||_{\infty} \ge |f_{j,i}(x) - f_{j,i}(y)| \ge \Delta$$

Applying union bound over all $\binom{n}{2}$ pairs (x, y), we get that with probability $\geq \frac{1}{2}$ for all $x, y \in X$, $\|f(x) - f(y)\|_{\infty} \geq \Delta = \frac{1}{2q-1}d(x, y)$.

Proof of Lemma 2 Define B(x,r) the ball of radius r around $x \in X$. Consider the sequence $B_0 = B(x,0), B_1 = B(y,\Delta), B_2 = B(x,2\Delta), B_3 = B(y,3\Delta) \dots B_q = B(x \text{ or } y, q\Delta).$

Claim 3 Exist
$$j \in [1 \dots m]$$
 and $t \in [0 \dots q-1]$ such that $|B_t| \ge n^{\frac{j-1}{q}}$ and $|B_{t+1}| \le n^{\frac{j}{q}}$

Proof Idea Note that $1 \leq |B_i| \leq n$. Consider the partitioning of [1, n] into q intervals $1, n^{\frac{1}{q}}, n^{\frac{2}{q}}, \ldots, n^{\frac{q-1}{q}}, n$. Use counting argument for the case $|B_i|$ is increasing. Otherwise, use the existence of t s.t $|B_t| > |B_{t+1}|$.

Let B_t and B_{t+1} as in the claim. For $|d(x, A_{j,i}) - d(y, A_{j,i})|$ to be at least Δ it suffices that $A_{j,i}$ contains at least one point from B_t and no points from the open ball $\overset{\circ}{B}_{t+1}$. By using the claim, we can bound the probabilities of the events to be at least $\frac{P}{3}$ and $\frac{1}{4}$ respectively. Using the fact the events are independent we get:

$$Pr[|d(x, A_{j,i}) - d(y, A_{j,i})| \ge \Delta] \ge \frac{P}{12}$$

Corollary 4 Every n-point metric (X; d) embeds into l_2 (and l_1) with distortion $O(\log^2 n)$

Proof Idea Consider the same embedding f as embedding into l_2^k with $q = \log n$ which implies $k = O(\log^2 n) \blacksquare$

Remark In general $l_2 \subseteq l_1$, i.e every n-point metric that embeds isometrically into l_2 also embeds isometrically into l_1 .

An optimal bound is obtained in the following theorem:

Theorem 5 (Bourgain 85') Every n-point metric (X;d) embeds into l_2 with distortion $O(\log n)$

2 Sparsest Cut

The input of the Sparsest Cut problem is a graph G = (V, E) s.t |V| = n, and k pairs of vertices called demand pairs $\{s_1, t_1\}, \ldots, \{s_k, t_k\} \subseteq V$.

Given such a graph and $S \subseteq V$ we can define the notion of *sparsity* for the cut (S, \overline{S}) .

Definition 6

sparsity
$$\stackrel{\text{def}}{=} \frac{|\{(\mathbf{u}, \mathbf{v}) \in \mathbf{E} : |(\mathbf{u}, \mathbf{v}) \cap \mathbf{S}| = 1\}|}{|\{\mathbf{i} : |(\mathbf{s}_{\mathbf{i}}, \mathbf{t}_{\mathbf{i}}) \cap \mathbf{S}| = 1\}} = \frac{number of edges \ crossing \ the \ cut}{number \ of \ demand \ pairs \ separated \ by \ the \ cut}$$

The objective of the *Sparsest Cut* problem is to find a cut S that minimizes the sparsity. **Remark** A special case of the sparsest cut problem is *uniform demand* in which there are $\binom{n}{2}$ demand pairs (demand pair for each pair of vertices).

Denote by $e(S, \overline{S})$ the number of edges crossing a cut S.

sparsity uniform demand = $\frac{e(S,\overline{S})}{|S| \cdot |\overline{S}|}$

Without loss of generality $|S| \leq \frac{|V|}{2} = \frac{n}{2}$ and $\frac{n}{2} \leq |\overline{S}| \leq n$ thus after scaling the problem is equivalent to minimizing $\frac{e(S,\overline{S})}{|S|}$ (up to a factor of 2).

2.1 Formulation as a Linear Program

Definition 7 A given cut (S, \overline{S}) may be thought of as a Cut Metric $d(\cdot, \cdot)$ defined by:

$$f(x) = \begin{cases} 1 & x \in S \\ 0 & x \notin S \end{cases}$$
$$\forall u, v \in V, d(u, v) = |f(u) - f(v)|$$

The sparsest cut problem can be formulated as the following optimization problem:

$$OPT = \min \frac{\sum_{(u,v) \in E} d(u,v)}{\sum_{i=1}^{k} d(s_i, t_i)}$$

subject to: $d(\cdot, \cdot)$ is a cut metric

2.1.1 Relaxation to a linear program

$$LP = \min \sum_{(u,v)\in E} d(u,v) \text{ s.t:} \begin{cases} \sum_{i=1}^{k} d(s_i,t_i) = 1\\ d(\cdot,\cdot) \text{ is a metric} \end{cases}$$

Since the relaxation allows also solutions which are not a cut-metric $LP \leq OPT$. The relaxation of the sparsest set problem is a linear program,hence it can be solved in polynomial time.

2.1.2 Approximation of Sparsest Cut using LP relaxation

An interesting question is can we "round" a solution of the LP to a solution of the sparsest cut problem (i.e find the corresponding cut)?

A first step of the rounding will be given by Bourgain's theorem which establishes an embedding of the metric d found by the LP into l_1 with distortion $O(\log n)$. So exists $f: V \to l_1$ s.t $\forall u, v \in V$, $d(u, v) \leq ||f(u) - f(v)||_1 \leq O(\log n) \cdot d(u, v)$ We get: $\sum_{(u,v)\in E} ||f(u) - f(v)||_1 \leq O(\log n) \cdot LP$ where LP is the solution found by the linear program relaxation. By normalization we can also meet the condition $\sum_{i=1}^k ||f(s_i) - f(t_i)||_1 = 1$

Theorem 8 For every n-point metric (X, d) that embeds isometrically to l_1 , there exist $\alpha_i \geq 0$ and cut metrics τ_i s.t $\forall x, y \in X$ $d(x, y) = \sum_i \alpha_i \tau_i(x, y)$.