Seminar	on Algorithms and Geom	netry
	Lecture 3 $April 2 2009$	
Lecturer: Robert Krauthgamer	Scribe by: Shiri Chechik	Updated: April 12, 2009

1 Sparsest Cut

1.1 Approximation Algorithm for Sparsest Cut

Stage 0: Solve the relaxation of the sparsest cut problem. As it a linear program, it can be solved in polynomial time.

Stage 1: Embed the metric d found by the LP into l_1 with distortion $O(\log n)$. This also can be done in polynomial time by Bourgains theorem. So exists $f: V \to l_1$ such that for every $u, v \in V$

$$d(u,v) \le ||f(u) - f(v)|| \le O(\log n)d(u,v).$$

Therefore, $\sum_{(u,v)\in E} \|f(u) - f(v)\|_1 \le O(\log n)LP$ and $\sum_i^k \|f(s_i) - f(t_i)\|_1 = 1$ where LP is the solution found by the linear programming relaxation

the solution found by the linear programming relaxation.

Lemma 1 Every n-point metric \tilde{d} that embeds isometrically into l_1 can be written as a positive combination of cut metrics τ_i . I.e., there exists $\alpha_i > 0$ such that $\tilde{d}(x, y) = \sum \alpha_i \tau_i(x, y)$ for every $x, y \in V$. Furthermore, such α_i can be found in polynomial time and the number of $\alpha_i > 0$ is at most $\binom{n}{2}$.

We now use Lemma 1 for the second stage of the approximation algorithm.

Stage 2: Write the distance \tilde{d} from the embedding as $\tilde{d} = \sum \alpha_i \tau_i(x, y)$ for τ_i cut metrics. We now show that at least one of the cut metrics τ_i yields the desired approximation.

Claim 2 There exists j^* such that the objective $OBJ|_{d=\tau_{j^*}} \leq OBJ|_{d=\tilde{d}}$, i.e., $\frac{\sum \tau_{j^*}(u,v)}{\tau_{j^*}(s_i,t_i)} \leq \frac{\sum \tilde{d}(u,v)}{\tilde{d}(s_i,t_i)}$.

Proof The proof is a generalization of the following.
$$\forall a_1, \ldots, a_m, b_1, \ldots, b_m > 0 \min_l \frac{a_l}{b_l} \leq \frac{\sum a_l}{\sum b_l}$$
. Assume, towards contradiction, that $\min_l \frac{a_l}{b_l} > \frac{\sum a_l}{\sum b_l}$. We get that $b_1 \frac{\sum a_l}{\sum b_l} < a_1$. Similarly $b_i \frac{\sum a_l}{\sum b_l} < a_i$ for every $1 \leq i \leq m$. Therefore, $\sum_l a_l = \sum_i b_i \frac{\sum a_l}{\sum b_l} < \sum_l a_l$, a contradiction.

Finally, τ_{j^*} gives us $S_G^* \subseteq V$ whose value $= OBJ|_{d=\tau_{j^*}} \leq OBJ|_{d=d^*} \leq O(\log n)LP \leq O(\log n)OPT$.

Refinement: We can improve the approximation ratio to $O(\log k)$ by having one side of distortion guarantee only for demand pairs, i.e., $d(u,v) \leq ||f(u) - f(v)||$ only for the k demand pairs and $||f(u) - f(v)|| \leq Dd(u,v)$ for all pairs. **Theorem 3 (Aumann-Rabani, Linial-London-Rabinovich95)** Sparsest cut can be approximated in poly-time within factor $O(\log k)$.

2 Minimum Bisection

The input of the Minimum Bisection problem is a graph G = (V, E) such that |V| = n. The goal is to find a cut (S, \overline{S}) such that $|S| = |\overline{S}| = n/2$ so as to minimize $e(S, \overline{S})$. This problem is known to be NP-hard.

Recall that the sparsest-cut problem with uniform demands is the search of a cut S that minimizes $\frac{e(S,\bar{S})}{|S||\bar{S}|}$. Note that $\frac{e(S,\bar{S})}{|S|\cdot|\bar{S}|} \cong \frac{e(S,\bar{S})}{min\{|S|,|\bar{S}|\}\cdot n}$, up to a factor of 2.

We now show a poly-time algorithm that finds a $\frac{2}{3}$ -balanced cut S of cost $e(S, \overline{S}) \leq O(\log n) \cdot b_G^*$ where b_G^* is the optimal cost of the minimum bisection problem on the graph G.

Algorithm 2/3 - balanced - cut(G = (V, E))

1. Set $G_{alg} \leftarrow (V, E)$, denote by V_{alg} the set of vertices of the graph G_{alg}

- 2. While $|V_{alg}| \leq \frac{2n}{3}$
 - use $O(\log n)$ approximation algorithm for the sparsest-cut with uniform demands problem on G_{alg} to find a cut (S, \bar{S}) , where $|S| \leq |\bar{S}|$.
 - remove S from G_{alg} .
- 3. return V_{alg} , the vertices of G_{alg} .

Claim 4 The set of vertices returned by the algorithm V_{alg} satisfies $\frac{n}{3} \leq |V_{alg}| \leq \frac{2n}{3}$.

Proof At the beginning of the last iteration $|V_{alg}| \ge \frac{2n}{3}$ and we remove at most half the vertices from V_{alg} (since we remove the smaller side of the cut).

Denote by b_G^* the optimal cost of the minimum bisection problem and by S_G^* the optimal cut that achieves the cost b_G^* where $|S_G^*| = n/2$.

Claim 5 The cost of V_{alg} is at most $O(\log n)b_G^*$.

Proof Let S_{ℓ} be the set removed in iteration ℓ . Let S_{ℓ}^* be the set that best minimizes $\frac{e(S'_{\ell},\bar{S}'_{\ell})}{|S'_{\ell}|}$ in iteration ℓ . Where \bar{S}'_{ℓ} is the complement of the cut S'_{ℓ} in the graph of iteration ℓ . The set V_{alg} in iteration ℓ , denoted by V_{alg}^{ℓ} , contains at least $\frac{2n}{3}$ nodes, therefore $S_{G}^* \cap V_{alg}^{\ell} > \frac{n}{2} - \frac{n}{3} = \frac{n}{6}$ and also $\bar{S}_{G}^* \cap V_{alg}^{\ell} > \frac{n}{6}$. We get that $\frac{e(S_{\ell}^*, \bar{S}_{\ell}^*)}{|S_{\ell}^*|} \leq \frac{b_{G}^*}{n/6}$ and as we use a log *n*-approximation algorithm we now get $\frac{e(S_{\ell}, \bar{S}_{\ell})}{|S_{\ell}|} \leq O(\log n) \frac{e(S_{\ell}*, \bar{S}_{\ell}^*)}{|S_{\ell}^*|} \leq O(\log n) \frac{b_{G}^*}{n/6}$. Hence $e(V_{alg}, \bar{V}_{alg}) \leq \sum_{\ell} e(S_{\ell}, \bar{S}_{\ell}) \leq O(\log n) \frac{b_{G}^*}{n/6} \cdot \sum_{\ell} |S_{\ell}| \leq O(b_{G}^* \log n)$.

Theorem 6 (Leighton-Rao 88) There is a poly-time algorithm that finds a $\frac{2}{3}$ -balanced cut S of cost $e(S, \overline{S}) \leq O(\log n) \cdot b_G^*$ where b_G^* is the optimal cost of the minimum bisection problem on the graph G.

3 Distortion Lower Bounds

We now show a specific *n*-point space such that embedding this space to l_2 requires distortion of at least $\sqrt{\log n}$.

Lemma 7 (Short diagonals) Let x_1, x_2, x_3, x_4 be points in l_2 . Then $||x_1 - x_3||^2 + ||x_2 - x_4||^2 \le ||x_1 - x_2||^2 + ||x_2 - x_3||^2 + ||x_3 - x_4||^2 + ||x_4 - x_1||^2$.

Proof Observe that is suffices to prove it for $x_1, x_2, x_3, x_4 \in R$. For points x_i in some R^d , simply apply the inequality on each coordinate and then add these inequalities together. So consider $x_1, x_2, x_3, x_4 \in R$, $||x_1 - x_2||^2 + ||x_2 - x_3||^2 + ||x_3 - x_4||^2 + ||x_4 - x_1||^2 - ||x_1 - x_3||^2 - ||x_2 - x_4||^2 = |x_1 - x_2 + x_3 - x_4|^2 \ge 0$.

Theorem 8 (Enflo69) Let G = (V, E) be the discrete cube $\{0, 1\}^m$ and shortest-path distance $d_G(x, y) = \#(\text{bits } i \text{ such that } x_i \neq y_i)$. Then embedding d_G into l_2 requires distortion $\geq \sqrt{m} = \sqrt{\log |V|}$.

Remark: The above is optimal. The identity mapping: $x \to x$ has distortion \sqrt{m} . **Proof** Consider $V = \{0,1\}^m$. For $x \in V$, let $\bar{x} \in \{0,1\}^m$ be the complement of x. We will show that for every $f: V \to l_2$:

$$E_{x \in V}[\|f(x) - f(\bar{x})\|^2] \le m \cdot E_{(x,y) \in E}[\|f(x) - f(y)\|^2].$$
(1)

This would be enough to prove the lemma. By 1,

$$E_{x \in V}[\|f(x) - f(\bar{x})\|^2] \le m \cdot E_{(x,y) \in E}[\|f(x) - f(y)\|^2] \le m \cdot E_{(x,y) \in E}[d_G(x,y)^2] \le m \cdot 1 = m.$$

So there exists a point x such that $||f(x) - f(\bar{x})|| \le \sqrt{m} = \frac{d_G(x,\bar{x})}{\sqrt{m}}$.

We now prove equation 1. We prove it by induction. For m = 2, use the short diagonal Lemma (divided by 2). Assume the claim holds for m' < m and consider m' = m. Let x be a point in $\{0,1\}^{m-1}$. Apply the short diagonals lemma to $x0, x1, \bar{x}0, \bar{x}1$. We get $||f(x0) - f(\bar{x}1)||^2 + ||f(x1) - f(\bar{x}0)||^2 \le ||f(x0) - f(x1)||^2 + ||f(x1) - f(\bar{x}1)||^2 + ||f(\bar{x}1) - f(\bar{x}0)||^2 + ||f(\bar{x}0) - f(x0)||^2$. Finally, by summing on all x's and using the induction hypothesis we get the desired inequality.