Seminar on Algorithms and Geometry		
Lecture 3		
April 2, 2009		
Lecturer: Robert Krauthgamer	Scribe by: Shiri Chechik \quad Updated: April 12, 2009	

1 Sparsest Cut

1.1 Approximation Algorithm for Sparsest Cut

Stage 0: Solve the relaxation of the sparsest cut problem. As it a linear program, it can be solved in polynomial time.
Stage 1: Embed the metric d found by the LP into l_{1} with distortion $O(\log n)$. This also can be done in polynomial time by Bourgains theorem. So exists $f: V \rightarrow l_{1}$ such that for every $u, v \in V$

$$
d(u, v) \leq\|f(u)-f(v)\| \leq O(\log n) d(u, v) .
$$

Therefore, $\sum_{(u, v) \in E}\|f(u)-f(v)\|_{1} \leq O(\log n) L P$ and $\sum_{i}^{k}\left\|f\left(s_{i}\right)-f\left(t_{i}\right)\right\|_{1}=1$ where LP is the solution found by the linear programming relaxation.

Lemma 1 Every n-point metric \tilde{d} that embeds isometrically into l_{1} can be written as a positive combination of cut metrics τ_{i}. I.e., there exists $\alpha_{i}>0$ such that $\tilde{d}(x, y)=\sum \alpha_{i} \tau_{i}(x, y)$ for every $x, y \in V$. Furthermore, such α_{i} can be found in polynomial time and the number of $\alpha_{i}>0$ is at most $\binom{n}{2}$.

We now use Lemma 1 for the second stage of the approximation algorithm.
Stage 2: Write the distance \tilde{d} from the embedding as $\tilde{d}=\sum \alpha_{i} \tau_{i}(x, y)$ for τ_{i} cut metrics.
We now show that at least one of the cut metrics τ_{i} yields the desired approximation.
Claim 2 There exists j^{*} such that the objective $\left.O B J\right|_{d=\tau_{j^{*}}} \leq\left. O B J\right|_{d=\tilde{d}}$, i.e., $\frac{\sum \tau_{j^{*}}(u, v)}{\tau_{j^{*}}\left(s_{i}, t_{i}\right)} \leq$ $\frac{\sum \tilde{d}(u, v)}{\tilde{d}\left(s_{i}, t_{i}\right)}$.
Proof The proof is a generalization of the following. $\forall a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}>0 \min _{l} \frac{a_{l}}{b_{l}} \leq$ $\frac{\sum a_{l}}{\sum b_{l}}$. Assume, towards contradiction, that $\min _{l} \frac{a_{l}}{b_{l}}>\frac{\sum a_{l}}{\sum b_{l}}$. We get that $b_{1} \frac{\sum a_{l}}{\sum b_{l}}<a_{1}$. Similarly $b_{i} \sum_{\sum a_{l}}^{b_{l}}<a_{i}$ for every $1 \leq i \leq m$. Therefore, $\sum_{l} a_{l}=\sum_{i} b_{i} \sum_{\sum a_{l}}<\sum_{l} a_{l}$, a contradiction.

Finally, $\tau_{j^{*}}$ gives us $S_{G}^{*} \subseteq V$ whose value $=\left.O B J\right|_{d=\tau_{j^{*}}} \leq\left. O B J\right|_{d=d^{*}} \leq O(\log n) L P \leq$ $O(\log n) O P T$.

Refinement: We can improve the approximation ratio to $O(\log k)$ by having one side of distortion guarantee only for demand pairs, i.e., $d(u, v) \leq\|f(u)-f(v)\|$ only for the k demand pairs and $\|f(u)-f(v)\| \leq D d(u, v)$ for all pairs.

Theorem 3 (Aumann-Rabani, Linial-London-Rabinovich95) Sparsest cut can be approximated in poly-time within factor $O(\log k)$.

2 Minimum Bisection

The input of the Minimum Bisection problem is a graph $G=(V, E)$ such that $|V|=n$. The goal is to find a cut (S, \bar{S}) such that $|S|=|\bar{S}|=n / 2$ so as to minimize $e(S, \bar{S})$. This problem is known to be NP-hard.

Recall that the sparsest-cut problem with uniform demands is the search of a cut S that minimizes $\frac{e(S, \bar{S})}{|S||S|}$. Note that $\frac{e(S, \bar{S})}{|S| \cdot|S|} \cong \frac{e(S, \bar{S})}{\min \{|S|,|S|\} \cdot n}$, up to a factor of 2 .

We now show a poly-time algorithm that finds a $\frac{2}{3}$-balanced cut S of cost $e(S, \bar{S}) \leq$ $O(\log n) \cdot b_{G}^{*}$ where b_{G}^{*} is the optimal cost of the minimum bisection problem on the graph G.

Algorithm 2/3-balanced - cut $(G=(V, E))$

1. Set $G_{a l g} \leftarrow(V, E)$, denote by $V_{\text {alg }}$ the set of vertices of the graph $G_{a l g}$
2. While $\left|V_{\text {alg }}\right| \leq \frac{2 n}{3}$

- use $O(\log n)$ approximation algorithm for the sparsest-cut with uniform demands problem on $G_{\text {alg }}$ to find a cut (S, \bar{S}), where $|S| \leq|\bar{S}|$.
- remove S from $G_{a l g}$.

3. return $V_{\text {alg }}$, the vertices of $G_{\text {alg }}$.

Claim 4 The set of vertices returned by the algorithm $V_{\text {alg }}$ satisfies $\frac{n}{3} \leq\left|V_{\text {alg }}\right| \leq \frac{2 n}{3}$.
Proof At the beginning of the last iteration $\left|V_{\text {alg }}\right| \geq \frac{2 n}{3}$ and we remove at most half the vertices from $V_{\text {alg }}$ (since we remove the smaller side of the cut).

Denote by b_{G}^{*} the optimal cost of the minimum bisection problem and by S_{G}^{*} the optimal cut that achieves the cost b_{G}^{*} where $\left|S_{G}^{*}\right|=n / 2$.

Claim 5 The cost of $V_{\text {alg }}$ is at most $O(\log n) b_{G}^{*}$.
Proof Let S_{ℓ} be the set removed in iteration ℓ. Let S_{ℓ}^{*} be the set that best minimizes $\frac{e\left(S_{\ell}^{\prime}, S_{\ell}^{\prime}\right)}{\left|S_{\ell}^{\prime}\right|}$ in iteration ℓ. Where \bar{S}_{ℓ}^{\prime} is the complement of the cut S_{ℓ}^{\prime} in the graph of iteration ℓ. The set $V_{\text {alg }}$ in iteration ℓ, denoted by $V_{\text {alg }}^{\ell}$, contains at least $\frac{2 n}{3}$ nodes, therefore $S_{G}^{*} \cap V_{a l g}^{\ell}>$ $\frac{n}{2}-\frac{n}{3}=\frac{n}{6}$ and also $\bar{S}_{G}^{*} \cap V_{a l g}^{\ell}>\frac{n}{6}$. We get that $\frac{e\left(S_{\ell}^{*}, S_{\ell}^{*}\right)}{\left|S_{\ell}^{*}\right|} \leq \frac{b_{G}^{*}}{n / 6}$ and as we use a $\log n$ approximation algorithm we now get $\frac{e\left(S_{\ell}, \bar{S}_{\ell}\right)}{\left|S_{\ell}\right|} \leq O(\log n) \frac{e\left(S_{\ell}, \bar{S}_{\ell}^{*}\right)}{\left|S_{\ell}^{*}\right|} \leq O(\log n) \frac{b_{G}^{*}}{n / 6}$. Hence $e\left(V_{a l g}, \bar{V}_{\text {alg }}\right) \leq \sum_{\ell} e\left(S_{\ell}, \bar{S}_{\ell}\right) \leq O(\log n) \frac{b_{G}^{*}}{n / 6} \cdot \sum_{\ell}\left|S_{\ell}\right| \leq O\left(b_{G}^{*} \log n\right)$.

Theorem 6 (Leighton-Rao 88) There is a poly-time algorithm that finds a $\frac{2}{3}$-balanced cut S of cost $e(S, \bar{S}) \leq O(\log n) \cdot b_{G}^{*}$ where b_{G}^{*} is the optimal cost of the minimum bisection problem on the graph G.

3 Distortion Lower Bounds

We now show a specific n-point space such that embedding this space to l_{2} requires distortion of at least $\sqrt{\log n}$.

Lemma 7 (Short diagonals) Let $x_{1}, x_{2}, x_{3}, x_{4}$ be points in l_{2}. Then $\left\|x_{1}-x_{3}\right\|^{2}+\| x_{2}-$ $x_{4}\left\|^{2} \leq\right\| x_{1}-x_{2}\left\|^{2}+\right\| x_{2}-x_{3}\left\|^{2}+\right\| x_{3}-x_{4}\left\|^{2}+\right\| x_{4}-x_{1} \|^{2}$.

Proof Observe that is suffices to prove it for $x_{1}, x_{2}, x_{3}, x_{4} \in R$. For points x_{i} in some R^{d}, simply apply the inequality on each coordinate and then add these inequalities together. So consider $x_{1}, x_{2}, x_{3}, x_{4} \in R,\left\|x_{1}-x_{2}\right\|^{2}+\left\|x_{2}-x_{3}\right\|^{2}+\left\|x_{3}-x_{4}\right\|^{2}+\left\|x_{4}-x_{1}\right\|^{2}-\| x_{1}-$ $x_{3}\left\|^{2}-\right\| x_{2}-x_{4} \|^{2}=\left|x_{1}-x_{2}+x_{3}-x_{4}\right|^{2} \geq 0$.

Theorem 8 (Enflo69) Let $G=(V, E)$ be the discrete cube $\{0,1\}^{m}$ and shortest-path distance $d_{G}(x, y)=\#\left(\right.$ bits i such that $\left.x_{i} \neq y_{i}\right)$. Then embedding d_{G} into l_{2} requires distortion $\geq \sqrt{m}=\sqrt{\log |V|}$.

Remark: The above is optimal. The identity mapping: $x \rightarrow x$ has distortion \sqrt{m}.
Proof Consider $V=\{0,1\}^{m}$. For $x \in V$, let $\bar{x} \in\{0,1\}^{m}$ be the complement of x. We will show that for every $f: V \rightarrow l_{2}$:

$$
\begin{equation*}
E_{x \in V}\left[\|f(x)-f(\bar{x})\|^{2}\right] \leq m \cdot E_{(x, y) \in E}\left[\|f(x)-f(y)\|^{2}\right] . \tag{1}
\end{equation*}
$$

This would be enough to prove the lemma. By 1,
$E_{x \in V}\left[\|f(x)-f(\bar{x})\|^{2}\right] \leq m \cdot E_{(x, y) \in E}\left[\|f(x)-f(y)\|^{2}\right] \leq m \cdot E_{(x, y) \in E}\left[d_{G}(x, y)^{2}\right] \leq m \cdot 1=m$.
So there exists a point x such that $\|f(x)-f(\bar{x})\| \leq \sqrt{m}=\frac{d_{G}(x, \bar{x})}{\sqrt{m}}$.
We now prove equation 1. We prove it by induction. For $m=2$, use the short diagonal Lemma (divided by 2). Assume the claim holds for $m^{\prime}<m$ and consider $m^{\prime}=m$. Let x be a point in $\{0,1\}^{m-1}$. Apply the short diagonals lemma to $x 0, x 1, \bar{x} 0, \bar{x} 1$. We get $\| f(x 0)-$ $f(\bar{x} 1)\left\|^{2}+\right\| f(x 1)-f(\bar{x} 0)\left\|^{2} \leq\right\| f(x 0)-f(x 1)\left\|^{2}+\right\| f(x 1)-f(\bar{x} 1)\left\|^{2}+\right\| f(\bar{x} 1)-f(\bar{x} 0) \|^{2}+$ $\|f(\bar{x} 0)-f(x 0)\|^{2}$. Finally, by summing on all $x^{\prime} s$ and using the induction hypothesis we get the desired inequality.

