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1 Johnson-Lindenstrauss Lemma and Concentration of Mea-
sure

In the previous lecture we stated and proved the following theorem

Theorem 1 (Johnson-Lindenstrauss) For every subset X ⊆ `2 and every ε ≥ 0 there
is an embedding f : X ↪→ `k

2 with distortion 1 + ε and dimension k = O( 1
ε2

log n).

In this lecture we will see a sketch of an alternative proof of the theorem with an
emphasis on the phenomenon of concentration of measure.

Theorem 2 Let L be a random subspace of Rn of dimension k and let f : Rn 7→ L be an
orthogonal projection onto L (here we think of L as a copy of Rk). Then there exists a
constant c = c(n, k) s.t. for every x, y ∈ Rn

Pr
f

[1− ε ≤ ‖f(x)−f(y)‖
c‖x−y‖ ≤ 1 + ε] ≥ 1− 1

n3

Sketch of Proof L is chosen by picking k orthogonal vectors from Sn−1 s.t. each vector
has a uniform distribution over Sn−1. Alternatively choose a random rotation U : Rn 7→ Rn

and let L = U(span{e1, . . . , ek}) where e1, . . . , ek are the first k vectors of the canonical
basis of Rn. As in the previous class, it suffices to prove that for all v ∈ Sn−1

Pr
f

[1− ε ≤ ‖f(v)‖
c

≤ 1 + ε] ≥ 1− 1
n3

Denote w = (w1, . . . , wn) = U−1v and note that the projection v onto L has the same length
as that of w onto U−1(L) = span{e1, . . . , ek} so

‖f(v)‖ = ‖(w1, . . . , wk)‖ =
√

w2
1 + . . . + w2

k

Let µ denote the uniform probability measure on Sn−1 (the Haar measure), then w =
U−1v is distributed according to µ. We now ask what is the length of the projection of w
on the first k coordinates.

Theorem 3 Let g : Sn−1 7→ R be 1-Lipschitz i.e.

|g(x)− g(y)| ≤ ‖x− y‖
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and let m = m(g) be a median of g i.e.

Pr
x∈µ

[g(x) ≥ m] ≥ 1
2

and Pr
x∈µ

[g(x) ≤ m] ≥ 1
2

then for all δ > 0
Pr
x∈µ

[|g(x)−m| ≥ δ] ≤ 4e−δ2n/2

We can use theorem 3 to prove theorem 2. It can be easily verified that g(w) =
‖(w1, . . . , wk)‖ is 1-Lipschitz. Applying theorem 3 gives us the following bound

Pr
w

[m− δ ≤ g(w) ≤ m + δ] ≥ 1− 4e−δ2n/2

We now choose c = c(n, k) = m and δ = εm to get

Pr
f

[1− ε ≤ ‖f(v)‖
c

≤ 1 + ε] =

Pr
w

[m(1− ε) ≤ g(w) ≤ m(1 + ε)] ≥ 1− 4e−ε2m2n/2

All that is left is to lower bound m. We observe that

Ew∈µ[g(w)2] = E[w2
1 + . . . + w2

k] = kE[w2
1] =

k

n
E[w2

1 + . . . + w2
k] =

k

n

where we have used the symmetry of the coordinates, all of the coordinates are identically
distributed. We can use this to lower bound the median. Consider a parameter t > 0 we
partition the integration into two parts [0, (m + t)] and [(m + t), 1] and upper bound each
part

k

n
= E[g(w)2]

≤ Pr[g(w)2 ≥ (m + t)2] · 1 + Pr[g(w)2 ≤ (m + t)2] · (m + t)2

≤ 4e−t2n/2 + (m + t)2

By choosing t =
√

k
5n we get m ≥ Ω(

√
k
n). Finally

Pr
f

[1− ε ≤ ‖f(v)‖
c

≤ 1 + ε] ≥ 1− e−ε2kc′ ≥ 1− 1
n3

if k ≥ 100 1
ε2

log n.

How can we prove theorem 3? The following isoperimetric inequalities provide an an-
swer.

Theorem 4 (Paul Levy 1951) Let A ⊆ Sn−1 be a measurable set and let B ⊆ Sn−1 be a
cap with µ(A) = µ(B). Then for all ε > 0, µ(Aε) ≥ µ(Bε). Here

Aε = {x ∈ Sn−1 : d(x,A) ≤ ε}
and similarly for Bε.

5-2



Remark: Here distance is Euclidean, i.e. measured according to `2-norm, but similar theo-
rems can be proved for goedesic distance on the sphere.

Using Theorem 4 plus estimates on the volume of a spherical cap, one can obtain the
following bound on the measure of Aε. Such a bound can also be proved directly via the
Brunn-Minkowski Theorem.

Theorem 5 Let A ⊆ Sn−1 be a measurable set with µ(A) ≥ 1
2 then for all ε > 0

µ(Aε) ≥ 1− 2e−ε2n/2

Consider cutting the sphere by a hyperplane passing through the origin. The sets on both
sides have a measure of exactly 1

2 . Applying the inequality to each one of these sets we see
that almost all of the measure is concentrated on a thin strip around the equator. The total
amount of measure outside is an exponentially small function of the dimension.

We now sketch the proof of theorem 3 using theorem 5.
Sketch of Proof Apply theorem 5 to A− = {x ∈ Sn−1 : g(x) ≤ m} and obtain a lower
bound on µ(A−ε ). Then do similarly for A+ = {x ∈ Sn−1 : g(x) ≥ m}.
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