Seminar on Algorithms and Geometry		
	Lecture 5	
	May 21, 2009	
Lecturer: Robert Krauthgamer	Scribe by: Daniel Glasner	

1 Johnson-Lindenstrauss Lemma and Concentration of Measure

In the previous lecture we stated and proved the following theorem
Theorem 1 (Johnson-Lindenstrauss) For every subset $X \subseteq \ell_{2}$ and every $\epsilon \geq 0$ there is an embedding $f: X \hookrightarrow \ell_{2}^{k}$ with distortion $1+\epsilon$ and dimension $k=O\left(\frac{1}{\epsilon^{2}} \log n\right)$.

In this lecture we will see a sketch of an alternative proof of the theorem with an emphasis on the phenomenon of concentration of measure.

Theorem 2 Let L be a random subspace of \mathbb{R}^{n} of dimension k and let $f: \mathbb{R}^{n} \mapsto \mathbb{L}$ be an orthogonal projection onto L (here we think of L as a copy of \mathbb{R}^{k}). Then there exists a constant $c=c(n, k)$ s.t. for every $x, y \in \mathbb{R}^{n}$

$$
\operatorname{Pr}_{f}\left[1-\epsilon \leq \frac{\|f(x)-f(y)\|}{c\|x-y\|} \leq 1+\epsilon\right] \geq 1-\frac{1}{n^{3}}
$$

Sketch of Proof $\quad L$ is chosen by picking k orthogonal vectors from \mathbb{S}^{n-1} s.t. each vector has a uniform distribution over \mathbb{S}^{n-1}. Alternatively choose a random rotation $U: \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ and let $L=U\left(\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}\right)$ where e_{1}, \ldots, e_{k} are the first k vectors of the canonical basis of \mathbb{R}^{n}. As in the previous class, it suffices to prove that for all $v \in \mathbb{S}^{n-1}$

$$
\operatorname{Pr}_{f}\left[1-\epsilon \leq \frac{\|f(v)\|}{c} \leq 1+\epsilon\right] \geq 1-\frac{1}{n^{3}}
$$

Denote $w=\left(w_{1}, \ldots, w_{n}\right)=U^{-1} v$ and note that the projection v onto L has the same length as that of w onto $U^{-1}(L)=\operatorname{span}\left\{e_{1}, \ldots, e_{k}\right\}$ so

$$
\|f(v)\|=\left\|\left(w_{1}, \ldots, w_{k}\right)\right\|=\sqrt{w_{1}^{2}+\ldots+w_{k}^{2}}
$$

Let μ denote the uniform probability measure on \mathbb{S}^{n-1} (the Haar measure), then $w=$ $U^{-1} v$ is distributed according to μ. We now ask what is the length of the projection of w on the first k coordinates.

Theorem 3 Let $g: \mathbb{S}^{n-1} \mapsto \mathbb{R}$ be 1-Lipschitz i.e.

$$
|g(x)-g(y)| \leq\|x-y\|
$$

and let $m=m(g)$ be a median of g i.e.

$$
\operatorname{Pr}_{x \in \mu}[g(x) \geq m] \geq \frac{1}{2} \text { and } \operatorname{Pr}_{x \in \mu}[g(x) \leq m] \geq \frac{1}{2}
$$

then for all $\delta>0$

$$
\operatorname{Pr}_{x \in \mu}[|g(x)-m| \geq \delta] \leq 4 e^{-\delta^{2} n / 2}
$$

We can use theorem 3 to prove theorem 2. It can be easily verified that $g(w)=$ $\left\|\left(w_{1}, \ldots, w_{k}\right)\right\|$ is 1-Lipschitz. Applying theorem 3 gives us the following bound

$$
\operatorname{Pr}_{w}[m-\delta \leq g(w) \leq m+\delta] \geq 1-4 e^{-\delta^{2} n / 2}
$$

We now choose $c=c(n, k)=m$ and $\delta=\epsilon m$ to get

$$
\begin{gathered}
\operatorname{Pr}_{f}\left[1-\epsilon \leq \frac{\|f(v)\|}{c} \leq 1+\epsilon\right]= \\
\operatorname{Pr}_{w}[m(1-\epsilon) \leq g(w) \leq m(1+\epsilon)] \geq 1-4 e^{-\epsilon^{2} m^{2} n / 2}
\end{gathered}
$$

All that is left is to lower bound m. We observe that

$$
\mathbb{E}_{w \in \mu}\left[g(w)^{2}\right]=\mathbb{E}\left[w_{1}^{2}+\ldots+w_{k}^{2}\right]=k \mathbb{E}\left[w_{1}^{2}\right]=\frac{k}{n} \mathbb{E}\left[w_{1}^{2}+\ldots+w_{k}^{2}\right]=\frac{k}{n}
$$

where we have used the symmetry of the coordinates, all of the coordinates are identically distributed. We can use this to lower bound the median. Consider a parameter $t>0$ we partition the integration into two parts $[0,(m+t)]$ and $[(m+t), 1]$ and upper bound each part

$$
\begin{aligned}
\frac{k}{n} & =\mathbb{E}\left[g(w)^{2}\right] \\
& \leq \operatorname{Pr}\left[g(w)^{2} \geq(m+t)^{2}\right] \cdot 1+\operatorname{Pr}\left[g(w)^{2} \leq(m+t)^{2}\right] \cdot(m+t)^{2} \\
& \leq 4 e^{-t^{2} n / 2}+(m+t)^{2}
\end{aligned}
$$

By choosing $t=\sqrt{\frac{k}{5 n}}$ we get $m \geq \Omega\left(\sqrt{\frac{k}{n}}\right)$. Finally

$$
\operatorname{Pr}_{f}\left[1-\epsilon \leq \frac{\|f(v)\|}{c} \leq 1+\epsilon\right] \geq 1-e^{-\epsilon^{2} k c^{\prime}} \geq 1-\frac{1}{n^{3}}
$$

if $k \geq 100 \frac{1}{\epsilon^{2}} \log n$.
How can we prove theorem 3? The following isoperimetric inequalities provide an answer.

Theorem 4 (Paul Levy 1951) Let $A \subseteq \mathbb{S}^{n-1}$ be a measurable set and let $B \subseteq \mathbb{S}^{n-1}$ be a cap with $\mu(A)=\mu(B)$. Then for all $\epsilon>0, \mu\left(A_{\epsilon}\right) \geq \mu\left(B_{\epsilon}\right)$. Here

$$
A_{\epsilon}=\left\{x \in \mathbb{S}^{n-1}: d(x, A) \leq \epsilon\right\}
$$

and similarly for B_{ϵ}.

Remark: Here distance is Euclidean, i.e. measured according to ℓ_{2}-norm, but similar theorems can be proved for goedesic distance on the sphere.

Using Theorem 4 plus estimates on the volume of a spherical cap, one can obtain the following bound on the measure of A_{ϵ}. Such a bound can also be proved directly via the Brunn-Minkowski Theorem.

Theorem 5 Let $A \subseteq \mathbb{S}^{n-1}$ be a measurable set with $\mu(A) \geq \frac{1}{2}$ then for all $\epsilon>0$

$$
\mu\left(A_{\epsilon}\right) \geq 1-2 e^{-\epsilon^{2} n / 2}
$$

Consider cutting the sphere by a hyperplane passing through the origin. The sets on both sides have a measure of exactly $\frac{1}{2}$. Applying the inequality to each one of these sets we see that almost all of the measure is concentrated on a thin strip around the equator. The total amount of measure outside is an exponentially small function of the dimension.

We now sketch the proof of theorem 3 using theorem [5.
Sketch of Proof Apply theorem 5 to $A^{-}=\left\{x \in \mathbb{S}^{n-1}: g(x) \leq m\right\}$ and obtain a lower bound on $\mu\left(A_{\epsilon}^{-}\right)$. Then do similarly for $A^{+}=\left\{x \in \mathbb{S}^{n-1}: g(x) \geq m\right\}$.

