Seminar on Algorithms and Geometry		
	Lecture 6	
	June 4, 2009	
Lecturer: Robert Krauthgamer	Scribe by: Inbal Talgam	Updated: June 14, 2009

A Communication Complexity Perspective on Metric Spaces

Today we study the distance estimation problem in ℓ_{1} from a communication complexity perspective. Along the way we shall find a (weak) analogue in ℓ_{1} for the Johnson-Lindenstrauss dimension reduction lemma.

1 Setting

Assume Alice and Bob each have a private input of size n. They need to exchange enough information to be able to calculate a function of both values. We seek protocols that use the least possible communication in terms of:

1. Number of bits exchanged.
2. Number of communication rounds.

We focus on randomized protocols which are required to succeed with probability (say) $\geq \frac{2}{3}$ over public random coins. Another requirement is simultaneousness - Alice and Bob send only one message each to a referee, who calculates the output. Note that a simultaneous protocol is a particular case of a 1-round protocol (the referee can be simulated by one of the players, who is thus able to calculate the output after a single round).

2 Randomized Simultaneous Protocol for Equality Testing

We illustrate the concept of protocols with the problem of equality testing. We will use this protocol later.

Private inputs: $\quad x, y \in\{0,1\}^{n}$.

Output: Accept iff $x=y$.

Protocol: Alice and Bob choose $r \in\{0,1\}^{n}$ at random and send the referee $\langle x, r\rangle,\langle y, r\rangle$, where $\langle x, r\rangle=\sum_{i=1}^{n} x_{i} r_{i}$ (all calculations are modulo 2). The referee accepts iff $\langle x, r\rangle=$ $\langle y, r\rangle$.

Analysis: If $x=y$ then $\operatorname{Pr}[a c c e p t]=1$. If $x \neq y$ then there exists an index j such that $x_{j} \neq y_{j}$. The protocol accepts iff:

$$
\begin{aligned}
0=\langle x, r\rangle+\langle y, r\rangle & = \\
\sum_{i=1}^{n}\left(x_{i}+y_{i}\right) r_{i} & = \\
\sum_{i \neq j}\left(x_{i}+y_{i}\right) r_{i}+\left(x_{j}+y_{j}\right) r_{j} & = \\
\sum_{i \neq j}\left(x_{i}+y_{i}\right) r_{i}+1 \cdot r_{j} &
\end{aligned}
$$

By independence of the r_{i} 's this happens exactly with probability $\frac{1}{2}$. This probability can be lowered by repeating the protocol.

3 The Distance Estimation Problem in ℓ_{1}

Private inputs: $x, y \in \ell_{1}$. Wlog we assume $x, y \in\{0,1\}^{m}$.
Output: For an approximation parameter $\alpha \geq 1$ and a threshold parameter $R>0$, decide whether $\|x-y\|_{1} \leq R$ or $\|x-y\|_{1}>\alpha R$ (this is the decision version of the distance estimation within factor α).

Theorem 1 [Kushilevitz, Ostrovsky \& Rabani, 2000] For every $0<\epsilon<1$ and $R>0$, there is a randomized simultaneous protocol for estimating the ℓ_{1}-distance within factor $\alpha=1+\epsilon$ using $O\left(\frac{1}{\epsilon^{2}}\right)$ bits of communication.

Proof

Protocol: Alice and Bob choose $r \in\{0,1\}^{n}$ such that $r_{i}=1$ with probability $\frac{1}{2 R}$ and otherwise $r_{i}=0$. As before they send the referee $\langle x, r\rangle,\langle y, r\rangle$. This is repeated $T=O\left(\frac{1}{\epsilon^{2}}\right)$ times. The referee accepts iff $\langle x, r\rangle=\langle y, r\rangle$ in at least β-fraction of the T repetitions.

Analysis: We can think of r_{i} as if it were chosen in 2 independent steps: First, a random subset $S \subseteq\{1, \ldots, n\}$ is selected by including each i independently with probability $\frac{1}{R}$; Then, if $i \notin S$ then r_{i} is set to 0 , and if $i \in S$ then r_{i} is set to be a fair coin, i.e. 1 with probability $\frac{1}{2}$ and 0 otherwise. Denote by x_{S} (similarly y_{S}) the restriction of x to the positions in S. Once S is selected, the probability to accept is exactly as in example 1:

$$
\begin{aligned}
\operatorname{Pr}[\langle x, r\rangle=\langle y, r\rangle \mid S] & = \\
\operatorname{Pr}\left[\left\langle x_{S}, r_{S}\right\rangle=\left\langle y_{S}, r_{S}\right\rangle \mid S\right] & =\left\{\begin{array}{cc}
1 & x_{S}=y_{S} \\
\frac{1}{2} & \text { o.w. }
\end{array}\right.
\end{aligned}
$$

By the law of total probability:

$$
\operatorname{Pr}[\langle x, r\rangle=\langle y, r\rangle]=\frac{1}{2} \operatorname{Pr}\left[x_{S}=y_{S}\right]+\frac{1}{2}
$$

Notice that $\operatorname{Pr}\left[x_{S}=y_{S}\right]=\left(1-\frac{1}{R}\right)^{\|x-y\|_{1}}$, and so:

$$
\begin{gathered}
\|x-y\|_{1} \leq R \quad \Longrightarrow \quad P_{Y E S}:=\operatorname{Pr}\left[x_{S}=y_{S}\right] \geq\left(1-\frac{1}{R}\right)^{R} \\
\|x-y\|_{1}>(1+\epsilon) R \Longrightarrow P_{N O}:=\operatorname{Pr}\left[x_{S}=y_{S}\right]<\left(1-\frac{1}{R}\right)^{(1+\epsilon) R}
\end{gathered}
$$

An easy calculation shows that $P_{Y E S}-P_{N O}=\Omega(\epsilon)$ (using the fact that $P_{Y E S} \leq e^{-1}$ and the bound $e^{-\epsilon} \leq 1-\epsilon+\frac{\epsilon^{2}}{2}$, and assuming wlog $R \geq 2$. Since we repeat everything $T=O\left(\frac{1}{\epsilon^{2}}\right)$ times, with high probability the number of accepts will be concentrated around its expectation, which is $T\left(\frac{1}{2} P_{Y E S}+\frac{1}{2}\right)$ if $\|x-y\|_{1} \leq R$ and $T\left(\frac{1}{2} P_{N O}+\frac{1}{2}\right)$ if $\|x-y\|_{1}>$ $(1+\epsilon) R$. Therefore we choose β to be "in the middle" between the 2 expectations, i.e. $\beta=\frac{1}{2}+\frac{P_{Y E S}+P_{N O}}{4}$. A success probability of $\geq \frac{2}{3}$ can now be proved using Chernoff's bound.

Corollary 2 Given n points $x_{1}, \ldots, x_{n} \in \ell_{1}$ and parameters $0<\epsilon<1, R>0$, there is a map $f: \ell_{1} \rightarrow\{0,1\}^{T}$ for $T=O\left(\frac{1}{\epsilon^{2}} \log n\right)$ such that for all i, j :

$$
\begin{aligned}
\left\|x_{i}-x_{j}\right\|_{1} \leq R & \Longrightarrow\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\|_{1} \leq \beta T \\
\left\|x_{i}-x_{j}\right\|_{1}>(1+\epsilon) R & \Longrightarrow\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\|_{1}>\beta T
\end{aligned}
$$

In fact, the map f is constructed at random independently of the points, and thus we can derive a Near Neighbor Search algorithm for ℓ_{1}^{d} with approximation $1+\epsilon$, query time $O\left(\frac{1}{\epsilon^{2}} \log n+d\right)$ and preprocessing $d n^{O\left(\frac{1}{\epsilon^{2}}\right)}$, just by preparing in advance answers for all queries.

See Handout 7 for a lower bound on communication complexity and for research directions.

