Testing that distributions are close Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, Patrick White

Seminar on Sublinear Time Algorithms

May 26, 2010

Anat Ganor

Seminar on Sublinear Time Algorithms Testing that distributions are close

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

æ

Goal

Given two distributions over an n element set, we wish to check whether these distributions are statistically close

- The only allowed operation is independent sampling
- Sublinear time in the size of the domain
- There is a function $f(\epsilon)$ called the *gap* of the tester
- Closeness in *L*₁-norm
- No knowledge on the structure of the distributions

▲□ → ▲ □ → ▲ □ → …

- Related work
- 2 Algorithm that runs in time $O(n^{2/3} \epsilon^{-4} \log n)$
- 3 $\Omega(n^{2/3}\epsilon^{-2/3})$ lower bound
- Applications to mixing properties of Markov processes
- Further research

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Interactive setting

Theorem [A. Sahai, S. Vadhan]

Given distributions p and q, generated by poly-size circuits, the problem of distinguishing whether they are close or far in L_1 -norm, is complete for statistical zero-knowledge

Testing statistical hypotheses

The problem

Decide which of two known classes of distributions contains the distribution generating the examples

- Various assumptions on the distributions
- Various distance measures
- Testing closeness to a fixed, known distribution

프 에 제 프 어 - -

Testing the closeness of a given distribution to the uniform distribution

- Running time: $O(\sqrt{n})$ (tight)
- Application: testing closeness to being an expander
- Idea: Estimating the collision probability

Definition

The *collision probability* of p and q is the probability that a sample from each yields the same element

Key observations:

• The self-collision probability of p is $||p||_2^2$

2
$$||p - U||_2^2 = ||p||_2^2 - \frac{1}{n}$$

(ロ) (部) (E) (E) (E)

$$|| p - q ||_2^2 = || p ||_2^2 + || q ||_2^2 - 2 (p \cdot q)$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

$$|| oldsymbol{p} - oldsymbol{q} ||_2^2 = || oldsymbol{p} ||_2^2 + || oldsymbol{q} ||_2^2 - 2 (oldsymbol{p} \cdot oldsymbol{q})$$

The L_2 -distance tester

- Number of self-collisions taking *m* samples from $p \rightarrow r_p$
- ② Number of self-collisions taking *m* samples from $q \rightarrow r_q$
- Solution Number of collisions taking *m* samples from each *p* and $q \rightarrow s_{pq}$

• If
$$rac{2m}{m-1}(r_p+r_q)-2s_{pq}>rac{m^2\epsilon^2}{2}$$
 then reject

イロト イヨト イヨト イヨト

크

$$|| oldsymbol{p} - oldsymbol{q} ||_2^2 = || oldsymbol{p} ||_2^2 + || oldsymbol{q} ||_2^2 - 2 (oldsymbol{p} \cdot oldsymbol{q})$$

The L_2 -distance tester

- Number of self-collisions taking *m* samples from $p \rightarrow r_p$
- ② Number of self-collisions taking *m* samples from $q \rightarrow r_q$
- Solution Number of collisions taking *m* samples from each *p* and $q \rightarrow s_{pq}$

• If
$$\frac{2m}{m-1}(r_p+r_q)-2s_{pq}>\frac{m^2\epsilon^2}{2}$$
 then reject

Repeat $O(\log \frac{1}{\delta})$ times Reject if the majority of iterations reject, accept otherwise

크

$$||p-q||_2^2 = ||p||_2^2 + ||q||_2^2 - 2(p \cdot q)$$

Theorem - closeness in L_2 -norm

The tester runs in time $O(m \log \frac{1}{\delta})$ For $m = O(\epsilon^{-4})$ the following holds:

- If $||p q||_2 \le \frac{\epsilon}{2}$ then the test passes w.p. $\ge 1 \delta$
- If $||p q||_2 > \epsilon$ then the test rejects w.p. $\geq 1 \delta$

イロト イポト イヨト イヨト 二日

Theorem - closeness in L_1 -norm

Given parameters δ , ϵ and distributions p, q over [n], there is a test which runs in time $O(n^{2/3}\epsilon^{-4} \log n \log \frac{1}{\delta})$ such that:

- If $||p q||_1 \le \max\{\frac{\epsilon^2}{32\sqrt[3]{n}}, \frac{\epsilon}{4\sqrt{n}}\}$ then the test passes w.p. $\ge 1 \delta$
- If $||p q||_1 > \epsilon$ then the test rejects w.p. $\geq 1 \delta$

(ロ) (部) (E) (E) (E)

1st attempt

- For each distribution, sample enough elements to approximate the distribution
- Ocmpare the approximations

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

1st attempt

- For each distribution, sample enough elements to approximate the distribution
- Ocmpare the approximations

<u>Problem</u> We cannot learn a distribution using sublinear number of samples

Theorem

Suppose we have an algorithm \mathcal{A} that draws o(n) samples from an unknown distribution p and outputs a distribution $\mathcal{A}(p)$. There is some p for which p and $\mathcal{A}(p)$ have L_1 -distance close to 1

・ロト ・回 ト ・ヨト ・ヨト

æ

Using the L_2 -distance tester

Recall we can test L_2 -distance in sublinear time such that:

- If $||p-q||_2 \leq \frac{\epsilon}{2}$ then the test passes w.p. $\geq 1 \delta$
- If $||p q||_2 > \epsilon$ then the test rejects w.p. $\geq 1 \delta$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ● ●

Using the L_2 -distance tester

Recall we can test L_2 -distance in sublinear time such that:

- If $||p q||_2 \le \frac{\epsilon}{2}$ then the test passes w.p. $\ge 1 \delta$
- If $||\boldsymbol{p} \boldsymbol{q}||_2 > \epsilon$ then the test rejects w.p. $\geq 1 \delta$

2nd attempt

Test for L2-distance

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Recall we can test L_2 -distance in sublinear time such that:

- If $||p-q||_2 \leq \frac{\epsilon}{2}$ then the test passes w.p. $\geq 1 \delta$
- If $||p q||_2 > \epsilon$ then the test rejects w.p. $\geq 1 \delta$

2nd attempt

Test for L2-distance

<u>Problem</u> L_2 -distance does not in general give a good approximation to L_1 -distance

Example

Two distributions can have disjoint support and still have small L_2 -distance

Using the L₂-distance tester

Recall that
$$||v||_1 \leq \sqrt{n} \cdot ||v||_2$$

3rd attempt

Use the L_2 -distance tester with $\epsilon' = \Theta(\frac{\epsilon}{\sqrt{n}})$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへぐ

Using the L₂-distance tester

Recall that
$$||v||_1 \leq \sqrt{n} \cdot ||v||_2$$

3rd attempt

Use the L_2 -distance tester with $\epsilon' = \Theta(\frac{\epsilon}{\sqrt{n}})$

Problem: Takes too much time

Theorem

Given parameters δ , ϵ and distributions p, q over [n], there is a test which runs in time $O(\epsilon^{-4} \log \frac{1}{\delta})$ such that:

• If
$$||p - q||_2 \le \frac{\epsilon}{2}$$
 then the test passes w.p. $\ge 1 - \delta$

• If
$$||p - q||_2 > \epsilon$$
 then the test rejects w.p. $\geq 1 - \delta$

・ロン ・四 ・ ・ ヨン ・ ヨン

æ

Using the L₂-distance tester

When can we use the L_2 -distance tester with ϵ' and run sublinear time? **Key observation**:

Let $b = \max\{||p||_{\infty}, ||q||_{\infty}\}$ then $b^2 \leq ||p||_2^2, ||q||_2^2 \leq b$

Theorem - closeness in L_2 -norm, revised The tester runs in time $O(m \log \frac{1}{\delta})$ For $m = O((b^2 + \epsilon^2 \sqrt{b})\epsilon^{-4})$ the following holds: • If $||p - q||_2 \le \frac{\epsilon}{2}$ then the test passes w.p. $\ge 1 - \delta$ • If $||p - q||_2 > \epsilon$ then the test rejects w.p. $\ge 1 - \delta$

Corollary

If
$$b = O(n^{-\alpha})$$
 then applying the test with ϵ' takes time $O((n^{1-\alpha/2} + n^{2-2\alpha})\epsilon^{-4}\log \frac{1}{\delta})$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ • • • • • • •

The L_1 -distance tester

The L1-distance tester

- **()** Identify the "big" elements of $p, q \rightarrow S_p, S_q$
- Measure the distance corresponding to the "big" elements via straightforward sampling
- Modify the distributions so that the distance attributed to the "small" elements can be estimated using the L₂-distance test

Theorem - closeness in L_1 -norm

The tester runs in time $O(n^{2/3} e^{-4} \log n \log \frac{1}{\delta})$ and the following holds:

• If
$$||p - q||_1 \le \max\{\frac{\epsilon^2}{32\sqrt[3]{n}}, \frac{\epsilon}{4\sqrt{n}}\}$$
 then the test passes w.p. $\ge 1 - \delta$

• If $||p - q||_1 > \epsilon$ then the test rejects w.p. $\geq 1 - \delta$

• The "big" elements are identified correctly w.h.p

- Let Δ_1 be the L_1 -distance attributed to the "big" elements By Chernoff's inequality, Δ_1 is approximated upto a small additive error w.h.p using $O(n^{2/3}\epsilon^{-2} \log n)$ samples
- Let Δ_2 be the L_1 -distance of p' and q'Since $\max\{||p'||_{\infty}, ||q'||_{\infty}\} < n^{-2/3} + n^{-1}$ we can apply the L_2 -distance tester on $\frac{\epsilon}{2\sqrt{n}}$ with $O(n^{2/3}\epsilon^{-4}\log n\log \frac{1}{\delta})$ samples and get a good approximation of Δ_2
- It holds that $\Delta_1, \Delta_2 \leq ||p-q||_1 \leq 2\Delta_1 + \Delta_2$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Theorem

Given any test using $o(n^{2/3})$ samples, there exist distributions \bar{a}, \bar{b} of L_1 -distance 1 such that the test will be unable to distinguish the case where one distribution is \bar{a} and the other is \bar{b} from the case where both distributions are \bar{a}

▲□ → ▲ □ → ▲ □ → □ □

Theorem

Given any test using $o(n^{2/3})$ samples, there exist distributions \bar{a}, \bar{b} of L_1 -distance 1 such that the test will be unable to distinguish the case where one distribution is \bar{a} and the other is \bar{b} from the case where both distributions are \bar{a}

Define \bar{a}, \bar{b} as follows:

 $1 \le i \le n^{2/3}$: $a_i = b_i = \frac{1}{2n^{2/3}}$ (heavy elements) $n/2 < i \le 3n/4$: $a_i = \frac{2}{n}$, $b_i = 0$ (light elements of *a*) $3n/4 < i \le n$: $b_i = \frac{2}{n}$, $a_i = 0$ (light elements of *b*) For the remaining *i*: $a_i = b_i = 0$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- We can assume that the tester is symmetric
- None of the light elements occur more than twice w.h.p
- Let *H* be the number of collisions among the heavy elements Let *L* be the number of collisions among the light elements The *L*₁-distance between *H* and *H* + *L* is o(1)
 ⇒ No statistical test can distinguish *H* and *H* + *L* with non-trivial probability

Definition

A Markov chain *M* is (ϵ, t) -*mixing* if there exists a distribution \bar{s} such that for all states $u, ||\bar{e_u}M^t - \bar{s}||_1 \le \epsilon$

Definition

A Markov chain *M* is (ϵ, t) -*mixing* if there exists a distribution \bar{s} such that for all states u, $||\bar{e_u}M^t - \bar{s}||_1 \le \epsilon$

Theorem

There exists a test with time complexity $\tilde{O}(nt \cdot T(n, \epsilon, \delta/n))$ such that:

- If M is $(f(\epsilon)/2, t)$ -mixing then the test passes w.p. $\geq 1 \delta$
- If *M* is (ϵ, t) -mixing then the test rejects w.p. $\geq 1 \delta$

The mixing tester

Use the L_1 -distance tester to compare each distribution $\bar{e_u}M^t$ with the average distribution after *t* steps:

$$\bar{s_{M,t}} = rac{1}{n}\sum_{u}ar{e_{u}}M^{t}$$

・ロト ・回 ト ・ヨト ・ヨト

The mixing tester

Use the L_1 -distance tester to compare each distribution $\bar{e_u}M^t$ with the average distribution after *t* steps:

$$\bar{\mathbf{s}}_{M,t} = \frac{1}{n} \sum_{u} \bar{\mathbf{e}}_{u} M^{t}$$

Proof sketch:

- Assume that every state is $(f(\epsilon)/2, t)$ -close to some distribution $\bar{s} \Rightarrow s_{M,t} \text{ is } f(\epsilon)/2$ -close to \bar{s}
 - \Rightarrow every state is (*f*(ϵ), *t*)-close to $\bar{s}_{M,t}$
- If there is no distribution that is (ε, t)-close to all states then, in particular, s_{M,t} is not (ε, t)-close to at least one state

- **1** Test that *most* states reach the same distribution after *t* steps The idea: pick $O(\frac{1}{a} \cdot \log \frac{1}{\delta})$ starting states uniformly at random
- Extension to sparse graphs and uniform distributions

回 とくき とくき とうき

- Other distance measures
- Weighted distances
- Non independent samples
- Tighter bounds

æ