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Definition of Monotonicity

• For x=(x1x2…xn), y=(y1y2…yn){0,1}n, x<y if for 
all i, xi≤yi, and for some j, xj<yj.

• A function f{0,1}n→{0,1} is monotone if for 
all x<y, f(x)≤f(y).

• A DNF formula with no negations over {xi}.

• A function respecting the partial order defined 
by a directed boolean hypercube.



Testing Monotonicity

• There is an algorithm with query complexity 
O(n/ε) that always accepts monotone 
functions and rejects function that are ε-far 
from monotone with constant probability. 

• Known lower bound - Ω(n½) for 1-sided error, 
Ω(logn) for 2-sided error.



The Algorithm (Single Step)

For f{0,1}n→{0,1}:

1. Uniformly at random select i{1,…,n} and 
x{0,1}n.

2. If f(xi(0)) ≤ f(xi(1)) accept, otherwise reject.

Where xi(b)=x1…xibxi+1…xn.



Definitions

• δ(f) – The probability the algorithm rejects f.

• ε(f) – The distance of f from the monotone 
functions.

• Claim: 

ε(f)/n ≤ δ(f) ≤ 2ε(f)



Analysis of the Algorithm

• Trivially, the algorithm always accepts 
monotone functions

• Assuming the claim, O(n/ε) iterations suffice.



Definitions

• U = {(xi(0), xi(1)) | x{0,1}n, i{1..n}}, all the 
pairs that differ on one coordinate.

• |U|=n2n-1.

• ∆(f) = {(x, y)U | f(x)>f(y)}, all the pairs 
violating monotonicity.

• δ(f)=|∆(f)|/|U|.



Upper Bound on δ

• In order to make f monotone, one output 
from each violating pair must be changed.

• Every string belongs to at most n pairs.

• The number of changes is

ε(f)2n ≥ |∆(f)|/n = δ(f)|U|/n = δ(f)2n-1

• Thus, δ(f) ≤ 2ε(f).



Definitions

Function Si(f):

• If f(xi(0))≤f(xi(1)), Si(f)(x)=f(x).

• Otherwise, Si(f)(x)=1-f(x).

• Di(f)=|{x | Si(f)(x) ≠ f(x)}|.

• ∑Di(f)=2|∆(f)|.



Non Decreasing Monotonicity

• Lemma: Dj(Si(f))≤Dj(f).

• Let x be such that Si(f)(x) ≠ Sj(Si(f))(x).

• Define h(a,b)=Si(f)(x
ij(a,b). 



Non Decreasing Monotonicity

• Possible values of h(a,b):

• In all cases, there is a unique y with

f(y) ≠ Sj(f)(y).

a\b 0 1

0 0 0

1 1 0

a\b 0 1

0 1 0

1 1 0

a\b 0 1

0 1 0

1 1 0

a\b 0 1

0 1 0

1 1 1



Lower Bound on δ

• By inductive application of the lemma,

Di(Si-1…S1(f)) ≤ Di(f).

• g = SnSn-1…S2S1(f).

• g is monotone, so ε(f) ≤ dist(f,g).



Lower Bound on δ

• δ(f) = |∆(f)|/|U|.

• ∑Di(f)=2|∆(f)|.

• ε(f) ≤ dist(f,g).

• 2ndist(f,g) ≤ ∑Di(Si-1…S1(f)) ≤ ∑Di(f).

• δ(f) = |∆(f)|/|U| = 2-n∑Di(f)/n ≥ dist(f,g)/n ≥ 
ε(f)/n.



Almost Tight Bounds on δ

• For ε>0, there are functions g and h such that:

ε(g), ε(h) = ε-o(ε)

δ(g) = 2ε/n

δ(h) = ε



Almost Tight Bounds on δ

• Let g be an anti-dictatorship function (1 if 
x1=0, 0 otherwise).

• δ(g) = 1/n.

• ε(g) = ½, since there is a perfect matching 
between the set of values with x1=0 and x1=1, 
and at least one value in each pair must be 
modified. 



Almost Tight Bounds on δ

• Consider the boolean hypercube as a directed 
graph, where the directed edges are from 
(x1x2…xi-10xi+1…xn) to (x1x2…xi-11xi+1…xn).

• Let Li be the set of vertices with hamming 
weight i.

• There are only edges from Li to Li+1.

• Let h be the function receiving i mod 2 on Li.

• δ(h) = ½.



Almost Tight Bounds on δ

L2j-1, f1

L2j, f0

L2j+1, f1



Almost Tight Bounds on δ

• Consider a pair of layers with all violating 
edges between them.

• Using Hall’s Theorem, there is a matching 
containing all the vertices of the smaller layer.

• The number of unmatched vertices is at most 

∑||L2i|-|L2i-1|| ≤ 2|L[n/2]| = O(2n/√n)

• ε(h) = ½-O(1/√n).



Almost Tight Bounds on δ

• These results can be extended to general 
values of ε, by considering only vertices with a 
certain suffix.



Extending the Domain

For f{1…d}n→{0,1}:

1. Uniformly at random select i{1,…,n} and 
x{1…d}n.

2. According to some distribution p, select a<b.

3. If f(xi(a))≤f(xi(b)) accept, otherwise reject.



Extending the Domain

• There is an algorithm with query complexity 
O(qp(n,ε,d)) that always accepts monotone 
functions and rejects function that are ε-far 
from monotone with constant probability. 



Extending the Domain

• Using similar arguments, it is possible to show 
that

Ei,y[δ(f○yi))] ≤ δ(f)

ε(f)/2n ≤ Ei,y[ε(f○yi)]

• Hence, enough to lower bound δ(f○yi) in 
terms of ε(f○yi).

• f○yi is a function from {1…d} to {0,1}.



Distribution #1

• Uniform over all pairs (a, a+1).

• If f is non monotone, There is at least (and 
possibly at most) one pair (a, a+1) such that 
f(a)>f(a+1).

• There are d-1 pairs and ε(f)≤½.

• 2ε(f)/(d-1) ≤ δ(f).

• O(dn/ε) repetitions suffice.



Distribution #2

• Uniform over all pairs (a, b) such that a<b.

• 2e difference between f and f*.

• ε(f) ≤ 2e/d.

• δ(f) ≥ 2(e/d)2 ≥ ε(f)2/2.

f 0 0 1 1 0 1 0 0 1 0 1 1 1 1

f* 0 0 0 0 0 0 1 1 1 1 1 1 1 1



Distribution #2

• Ei,y[δ(f○yi)] ≥ Ei,y[ε(f○yi)2] ≥ (ε(f)/2n)2.

• O(n2/ε2) repetitions suffice.



Distribution #3

• The distribution is uniform over P, where P is 
the set containing all pairs {a, b} such that 2k

divides a, but 2k+1 does not divide a and b, 
and |a-b|≤2k.

• There are O(dlogd) such pairs: each i is a 
member of at most O(logd) pairs, by 
considering the binary representation of i.

• Claim: there are Ω(dε(f)) violating pairs.



Distribution #3

• Consider P as directed edges on a graph, 
where the direction is towards the larger 
number.

• If a>b there is a directed path of length at 
most 2 from b to a.

• Let i be the MSB where a and b differ. Then, 
(a1a2…ai-110…0)=(b1b2…bi-110…0) is the 
middle vertex in the path.



Distribution #3

• 2e difference between f and f*.

• ε(f) ≤ 2e/d.

• There are least  e=Ω(dε(f)) edge disjoint 
paths with a violating edge.

• δ(f) = Ω(dε(f)/dlogd) = Ω(ε(f)/logd). 

• O(nlogd/ε) repetitions suffice.

f 0 0 1 1 0 1 0 0 1 0 1 1 1 1

f* 0 0 0 0 0 0 1 1 1 1 1 1 1 1



Extending the Range

For f{1…d}n→{0…c}:

1. Uniformly at random select i{1,…,n} and 
x{1…d}n.

2. According to some distribution p, select a<b.

3. If f(xi(a))≤f(xi(b)) accept, otherwise reject.



Extending the Range

• Define fi(x) to be 0 if f(x)<i, 1 otherwise.

• Then

ε(f) ≤ ∑ε(fi)

δ(f) ≥ δ(fi)

• Which implies an additional multiplicative 
factor of c to the query complexity.



Extending the Range

• It is possible to show O(nlogdlogc/ε) queries 
suffice.

• A different algorithm can achieve query 
complexity of O((n/ε)log2(n/ε)).



Unateness

• A function f{0,1}n→{0,1} is unate if  there is 
a{0,1}n such that f(xa) is monotone.

• A DNF formula where every variable is either 
always negated or never negated.

• Similar tester; O(n1.5/ε) pairs to find evidence 
for non unateness (using the generalized 
birthday paradox).



Improved Testing Algorithms for 
Monotonicity

Yevgeniy Dodis, Oded Goldreich, Eric 
Lehman, Sofya Raskhodnikova, Dana 

Ron, Alex Samorodnitsky



Definitions

• S[f,a,b] – changes the range of f to be 
between a and b by changing all values that 
are more than b and less than a to be b and a 
respectively.

• M[f] – arbitrary monotone function closest to 
f.



Definitions

• C[f,a,b] – if S[f,a,b] is different than 
M[S[f,a,b]], gives the value of M[S[f,a,b]], 
otherwise the value of f.

• dist(f, C[f,a,b]) = ε(S[f,a,b]).



Properties of C[f,a,b]

• Does not add violating pairs.

• Has no violating pairs with values crossing 
the interval [a,b].

• If (y,x) is a violating pair with 
C[f,a,b](x)<C[f,a,b](y) then f(x)≤C[f,a,b](x), 
C[f,a,b](y)≤f(y).

• Proof by case analysis.



Analysis of the Algorithm

• g1=S[f, c/2-1,c/2] f1=C[f, c/2-1, c/2]

• g2=S[f1, 0, c/2-1] f2=C[f1, 0, c/2-1]

• g3=S[f2, c/2, c] f3=C[f2, c/2, c]

• δ(f) ≥ δ(g1), since S does not add violating 
pairs.

• δ(f) ≥ δ(g2)+δ(g3), since the set of violating 
pairs of g2 and g3 is disjoint.



Analysis of the Algorithm

• g1=S[f, c/2-1,c/2] f1=C[f, c/2-1, c/2]

• g2=S[f1, 0, c/2-1] f2=C[f1, 0, c/2-1]

• g3=S[f2, c/2, c] f3=C[f2, c/2, c]

• f3 is monotone, since it has no violating pairs 
in the intervals (or crossing them) [c/2-1,c/2], 
[0, c/2-1], [c/2, c].



Analysis of the Algorithm

• g1=S[f, c/2-1,c/2] f1=C[f, c/2-1, c/2]

• g2=S[f1, 0, c/2-1] f2=C[f1, 0, c/2-1]

• g3=S[f2, c/2, c] f3=C[f2, c/2, c]

• ε(f) ≤ dist(f,f3) ≤ dist(f,f1)+dist(f1,f2)+dist(f2,f3) 
≤ ε(g1)+ε(g2)+ε(g3).



Analysis of the Algorithm

• Assume c=2s. 

• Then, there is K such that ε(f) ≤ Ksδ(f) (for s=1
already proved with K=O(nlogd)):

ε(f) ≤ ε(g1)+ε(g2)+ε(g3) ≤

K(δ(g1)+(s-1)δ(g2)+(s-1)δ(g3)) ≤ 

K(δ(f)+(s-1)δ(f)) = Ksδ(f)


