Testing Monotonicity

Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, Alex Samorodnitsky

Definition of Monotonicity

- For $x=\left(x_{1} x_{2} \ldots x_{n}\right), y=\left(y_{1} y_{2} \ldots y_{n}\right) \in\{0,1\}^{n}, x<y$ if for all $i, x_{i} \leq y_{i}$, and for some $j, x_{j}<y_{j}$.
- A function $f \in\{0,1\}^{n} \rightarrow\{0,1\}$ is monotone if for all $x<y, f(x) \leq f(y)$.
- A DNF formula with no negations over $\left\{x_{i}\right\}$.
- A function respecting the partial order defined by a directed boolean hypercube.

Testing Monotonicity

- There is an algorithm with query complexity O(n / ε) that always accepts monotone functions and rejects function that are ε-far from monotone with constant probability.
- Known lower bound - $\Omega\left(n^{1 / 2}\right)$ for 1-sided error, $\Omega(\operatorname{logn})$ for 2 -sided error.

The Algorithm (Single Step)

For $f \in\{0,1\}^{n} \rightarrow\{0,1\}$:

1. Uniformly at random select $i \in\{1, \ldots, n\}$ and $x \in\{0,1\}^{n}$.
2. If $f\left(x^{i}(0)\right) \leq f\left(x^{i}(1)\right)$ accept, otherwise reject.

Where $x^{i}(b)=x_{1} \ldots x_{i} b x_{i+1} \ldots x_{n}$.

Definitions

- $\delta(f)$ - The probability the algorithm rejects f.
- $\varepsilon(f)$ - The distance of f from the monotone functions.
- Claim:

$$
\varepsilon(f) / n \leq \delta(f) \leq 2 \varepsilon(f)
$$

Analysis of the Algorithm

- Trivially, the algorithm always accepts monotone functions
- Assuming the claim, $O(n / \varepsilon)$ iterations suffice.

Definitions

- $U=\left\{\left(x^{i}(0), x^{i}(1)\right) \mid x \in\{0,1\}^{n}, i \in\{1 . . n\}\right\}$, all the pairs that differ on one coordinate.
- $|U|=n 2^{n-1}$.
- $\Delta(f)=\{(x, y) \in U \mid f(x)>f(y)\}$, all the pairs violating monotonicity.
- $\delta(f)=|\Delta(f)| /|U|$.

Upper Bound on δ

- In order to make f monotone, one output from each violating pair must be changed.
- Every string belongs to at most n pairs.
- The number of changes is

$$
\varepsilon(f) 2^{n} \geq|\Delta(f)| / n=\delta(f)|U| / n=\delta(f) 2^{n-1}
$$

- Thus, $\delta(f) \leq 2 \varepsilon(f)$.

Definitions

Function $S_{i}(f)$:

- If $f\left(x_{i}(0)\right) \leq f\left(x_{i}(1)\right), S_{i}(f)(x)=f(x)$.
- Otherwise, $S_{i}(f)(x)=1-f(x)$.
- $D_{i}(f)=\left|\left\{x \mid S_{i}(f)(x) \neq f(x)\right\}\right|$.
- $\sum D_{i}(f)=2|\Delta(f)|$.

Non Decreasing Monotonicity

- Lemma: $D_{j}\left(S_{i}(f)\right) \leq D_{j}(f)$.
- Let x be such that $S_{i}(f)(x) \neq S_{j}\left(S_{i}(f)\right)(x)$.
- Define $h(a, b)=S_{i}(f)\left(x^{i j}(a, b)\right.$.

Non Decreasing Monotonicity

- Possible values of $h(a, b)$:

$a \backslash b$	0	1	$a \backslash b$	0	1
0	1	0	0	1	0
1	1	0	1	1	1
$a \backslash b$	0	1	$a \backslash b$	0	1
0	0	0	0	1	0
1	1	0	1	1	0

- In all cases, there is a unique y with $f(y) \neq S_{j}(f)(y)$.

Lower Bound on δ

- By inductive application of the lemma,

$$
D_{i}\left(S_{i-1} \ldots S_{1}(f)\right) \leq D_{i}(\mathrm{f}) .
$$

- $g=S_{n} S_{n-1} \ldots S_{2} S_{1}(f)$.
- g is monotone, so $\varepsilon(f) \leq \operatorname{dist}(f, g)$.

Lower Bound on δ

- $\delta(f)=|\Delta(f)| /|U|$.
- $\sum D_{i}(f)=2|\Delta(f)|$.
- $\varepsilon(f) \leq \operatorname{dist}(f, g)$.
- $2^{n} \operatorname{dist}(f, g) \leq \sum D_{i}\left(S_{i-1} \ldots S_{1}(f)\right) \leq \sum D_{i}(f)$.
- $\delta(f)=|\Delta(f)| /|U|=2^{-n} \sum D_{i}(f) / n \geq \operatorname{dist}(f, g) / n \geq$ $\varepsilon(f) / n$.

Almost Tight Bounds on δ

- For $\varepsilon>0$, there are functions g and h such that:

$$
\begin{aligned}
& \varepsilon(g), \varepsilon(\mathrm{h})=\varepsilon-\mathrm{O}(\varepsilon) \\
& \delta(g)=2 \varepsilon / n \\
& \delta(h)=\varepsilon
\end{aligned}
$$

Almost Tight Bounds on δ

- Let g be an anti-dictatorship function (1 if $x_{1}=0,0$ otherwise).
- $\delta(g)=1 / n$.
- $\varepsilon(g)=1 / 2$, since there is a perfect matching between the set of values with $x_{1}=0$ and $x_{1}=1$, and at least one value in each pair must be modified.

Almost Tight Bounds on δ

- Consider the boolean hypercube as a directed graph, where the directed edges are from $\left(x_{1} x_{2} \ldots x_{i-1} 0 \mathrm{x}_{i+1} \ldots x_{n}\right)$ to $\left(x_{1} x_{2} \ldots x_{i-1} 1 x_{i+1} \ldots x_{n}\right)$.
- Let L_{i} be the set of vertices with hamming weight i.
- There are only edges from L_{i} to L_{i+1}.
- Let h be the function receiving $i \bmod 2$ on L_{i}.
- $\delta(h)=1 / 2$.

Almost Tight Bounds on δ

Almost Tight Bounds on δ

- Consider a pair of layers with all violating edges between them.
- Using Hall's Theorem, there is a matching containing all the vertices of the smaller layer.
- The number of unmatched vertices is at most

$$
\sum\left|\left|L_{2 i}\right|-\left|L_{2 i-1}\right|\right| \leq 2\left|L_{[n / 2]}\right|=O\left(2^{n} / V n\right)
$$

- $\varepsilon(h)=1 / 2-O(1 / \sqrt{ } n)$.

Almost Tight Bounds on δ

- These results can be extended to general values of ε, by considering only vertices with a certain suffix.

Extending the Domain

For $f \in\{1 \ldots . . .\}^{n} \rightarrow\{0,1\}$:

1. Uniformly at random select $i \in\{1, \ldots, n\}$ and $x \in\{1 . . . d\}^{n}$.
2. According to some distribution p, select $a<b$.
3. If $f\left(x^{i}(a)\right) \leq f\left(x^{i}(b)\right)$ accept, otherwise reject.

Extending the Domain

- There is an algorithm with query complexity $O\left(q_{p}(n, \varepsilon, d)\right)$ that always accepts monotone functions and rejects function that are ε-far from monotone with constant probability.

Extending the Domain

- Using similar arguments, it is possible to show that

$$
\begin{gathered}
\left.\mathrm{E}_{i, y}\left[\delta\left(f \circ y^{i}\right)\right)\right] \leq \delta(f) \\
\varepsilon(f) / 2 n \leq \mathrm{E}_{i, y}\left[\varepsilon\left(f \circ y^{i}\right)\right]
\end{gathered}
$$

- Hence, enough to lower bound $\delta\left(f \circ y^{i}\right)$ in terms of $\varepsilon\left(f \circ y^{i}\right)$.
- $f \circ y^{i}$ is a function from $\{1 \ldots . . d\}$ to $\{0,1\}$.

Distribution \#1

- Uniform over all pairs $(a, a+1)$.
- If f is non monotone, There is at least (and possibly at most) one pair ($a, a+1$) such that $f(a)>f(a+1)$.
- There are $d-1$ pairs and $\varepsilon(f) \leq 1 / 2$.
- $2 \varepsilon(f) /(d-1) \leq \delta(f)$.
- $\mathrm{O}(d n / \varepsilon)$ repetitions suffice.

Distribution \#2

- Uniform over all pairs (a, b) such that $a<b$.

f	0	0	1	1	0	1	0	0	1	0	1	1	1	1
\boldsymbol{f}^{*}	0	0	0	0	0	0	1	1	1	1	1	1	1	1

- $2 e$ difference between f and f^{*}.
- $\varepsilon(f) \leq 2 e / d$.
- $\delta(f) \geq 2(e / d)^{2} \geq \varepsilon(f)^{2} / 2$.

Distribution \#2

- $\mathrm{E}_{i, y}\left[\delta\left(f \circ y^{\prime}\right)\right] \geq \mathrm{E}_{i, y}\left[\varepsilon\left(f \circ y^{\prime}\right)^{2}\right] \geq(\varepsilon(f) / 2 n)^{2}$.
- $\mathrm{O}\left(n^{2} / \varepsilon^{2}\right)$ repetitions suffice.

Distribution \#3

- The distribution is uniform over P, where P is the set containing all pairs $\{a, b\}$ such that 2^{k} divides a, but 2^{k+1} does not divide a and b, and $|a-b| \leq 2^{k}$.
- There are $O(d \log d)$ such pairs: each i is a member of at most $\mathrm{O}(\log d)$ pairs, by
considering the binary representation of i.
- Claim: there are $\Omega(d \varepsilon(f))$ violating pairs.

Distribution \#3

- Consider P as directed edges on a graph, where the direction is towards the larger number.
- If $a>b$ there is a directed path of length at most 2 from b to a.
- Let i be the MSB where a and b differ. Then, $\left(a_{1} a_{2} \ldots a_{i-1} 10 \ldots 0\right)=\left(b_{1} b_{2} \ldots b_{i-1} 10 \ldots 0\right)$ is the middle vertex in the path.

Distribution \#3

f	0	0	1	1	0	1	0	0	1	0	1	1	1	1
f^{*}	0	0	0	0	0	0	1	1	1	1	1	1	1	1

- $2 e$ difference between f and f^{*}.
- $\varepsilon(f) \leq 2 e / d$.
- There are least $e=\Omega(d \varepsilon(f))$ edge disjoint paths with a violating edge.
- $\delta(f)=\Omega(d \varepsilon(f) / d \log d)=\Omega(\varepsilon(f) / \log d)$.
- $O(n \log d / \varepsilon)$ repetitions suffice.

Extending the Range

For $f \in\{1 \ldots . . d\}^{n} \rightarrow\{0 . . . c\}:$

1. Uniformly at random select $i \in\{1, \ldots, n\}$ and $x \in\{1 . . . d\}^{n}$.
2. According to some distribution p, select $a<b$.
3. If $f\left(x^{i}(a)\right) \leq f\left(x^{i}(b)\right)$ accept, otherwise reject.

Extending the Range

- Define $f_{i}(x)$ to be 0 if $f(x)<i$, 1 otherwise.
- Then

$$
\begin{aligned}
& \varepsilon(f) \leq \sum \varepsilon\left(f_{i}\right) \\
& \delta(f) \geq \delta\left(f_{i}\right)
\end{aligned}
$$

- Which implies an additional multiplicative factor of c to the query complexity.

Extending the Range

- It is possible to show $O(n \log d \log c / \varepsilon)$ queries suffice.
- A different algorithm can achieve query complexity of $\mathrm{O}\left((n / \varepsilon) \log ^{2}(n / \varepsilon)\right)$.

Unateness

- A function $f \in\{0,1\}^{n} \rightarrow\{0,1\}$ is unate if there is $a \in\{0,1\}^{n}$ such that $f(x \oplus a)$ is monotone.
- A DNF formula where every variable is either always negated or never negated.
- Similar tester; $\mathrm{O}\left(n^{1.5} / \varepsilon\right)$ pairs to find evidence for non unateness (using the generalized birthday paradox).

Improved Testing Algorithms for Monotonicity

Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, Alex Samorodnitsky

Definitions

- $\quad S[f, a, b]$ - changes the range of f to be between a and b by changing all values that are more than b and less than a to be b and a respectively.
- $M[f]$ - arbitrary monotone function closest to f.

Definitions

- $C[f, a, b]$ - if $S[f, a, b]$ is different than $M[S[f, a, b]]$, gives the value of $M[S[f, a, b]]$, otherwise the value of f.
- $\operatorname{dist}(f, C[f, a, b])=\varepsilon(S[f, a, b])$.

Properties of $C[f, a, b]$

- Does not add violating pairs.
- Has no violating pairs with values crossing the interval $[a, b]$.
- If (y, x) is a violating pair with $C[f, a, b](x)<C[f, a, b](y)$ then $f(x) \leq C[f, a, b](x)$, $C[f, a, b](y) \leq f(y)$.
- Proof by case analysis.

Analysis of the Algorithm

- $g_{1}=S[f, c / 2-1, c / 2] \quad f_{1}=C[f, c / 2-1, c / 2]$
- $g_{2}=S\left[f_{1}, 0, c / 2-1\right] \quad f_{2}=C\left[f_{1}, 0, c / 2-1\right]$
- $g_{3}=S\left[f_{2}, c / 2, c\right] \quad f_{3}=C\left[f_{2}, c / 2, c\right]$
- $\delta(f) \geq \delta\left(g_{1}\right)$, since S does not add violating pairs.
- $\delta(f) \geq \delta\left(g_{2}\right)+\delta\left(g_{3}\right)$, since the set of violating pairs of g_{2} and g_{3} is disjoint.

Analysis of the Algorithm

- $g_{1}=S[f, c / 2-1, c / 2] \quad f_{1}=C[f, c / 2-1, c / 2]$
- $g_{2}=S\left[f_{1}, 0, c / 2-1\right] \quad f_{2}=C\left[f_{1}, 0, c / 2-1\right]$
- $g_{3}=\mathrm{S}\left[f_{2}, c / 2, c\right] \quad f_{3}=C\left[f_{2}, c / 2, c\right]$
- f_{3} is monotone, since it has no violating pairs in the intervals (or crossing them) [$c / 2-1, c / 2]$, [0, c/2-1], [c/2, c].

Analysis of the Algorithm

- $g_{1}=S[f, c / 2-1, c / 2] \quad f_{1}=C[f, c / 2-1, c / 2]$
- $g_{2}=S\left[f_{1}, 0, c / 2-1\right] \quad f_{2}=C\left[f_{1}, 0, c / 2-1\right]$
- $g_{3}=S\left[f_{2}, c / 2, c\right] \quad f_{3}=C\left[f_{2}, c / 2, c\right]$
- $\varepsilon(f) \leq \operatorname{dist}\left(f, f_{3}\right) \leq \operatorname{dist}\left(f, f_{1}\right)+\operatorname{dist}\left(f_{1}, f_{2}\right)+\operatorname{dist}\left(f_{2}, f_{3}\right)$ $\leq \varepsilon\left(g_{1}\right)+\varepsilon\left(g_{2}\right)+\varepsilon\left(g_{3}\right)$.

Analysis of the Algorithm

- Assume $c=2^{s}$.
- Then, there is K such that $\varepsilon(f) \leq K s \delta(f)$ (for $s=1$ already proved with $K=O(n \log d)$):
$\varepsilon(f) \leq \varepsilon\left(g_{1}\right)+\varepsilon\left(g_{2}\right)+\varepsilon\left(g_{3}\right) \leq$
$K\left(\delta\left(g_{1}\right)+(s-1) \delta\left(g_{2}\right)+(s-1) \delta\left(g_{3}\right)\right) \leq$
$K(\delta(f)+(s-1) \delta(f))=K s \delta(f)$

