Testing Monotonicity

Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, Alex Samorodnitsky

Presented by Shlomo Jozeph

Definition of Monotonicity

- For $x = (x_1 x_2 ... x_n)$, $y = (y_1 y_2 ... y_n) \in \{0, 1\}^n$, x < y if for all $i, x_i \le y_i$, and for some $j, x_j < y_j$.
- A function $f \in \{0,1\}^n \rightarrow \{0,1\}$ is monotone if for all x < y, $f(x) \le f(y)$.
- A DNF formula with no negations over $\{x_i\}$.
- A function respecting the partial order defined by a directed boolean hypercube.

Testing Monotonicity

- There is an algorithm with query complexity O(n/ε) that always accepts monotone functions and rejects function that are ε-far from monotone with constant probability.
- Known lower bound $\Omega(n^{\frac{1}{2}})$ for 1-sided error, $\Omega(\log n)$ for 2-sided error.

The Algorithm (Single Step)

For $f \in \{0,1\}^n \rightarrow \{0,1\}$:

- Uniformly at random select i∈{1,...,n} and x∈{0,1}ⁿ.
- 2. If $f(x^i(0)) \le f(x^i(1))$ accept, otherwise reject.

Where $x^{i}(b) = x_{1} ... x_{i} b x_{i+1} ... x_{n}$.

Definitions

- $\delta(f)$ The probability the algorithm rejects f.
- ε(f) The distance of f from the monotone functions.
- Claim:

 $\varepsilon(f)/n \leq \delta(f) \leq 2\varepsilon(f)$

- Trivially, the algorithm always accepts monotone functions
- Assuming the claim, $O(n/\varepsilon)$ iterations suffice.

Definitions

- $U = \{(x^{i}(0), x^{i}(1)) | x \in \{0,1\}^{n}, i \in \{1...n\}\}, all the pairs that differ on one coordinate.$
- $|U| = n2^{n-1}$.

- Δ(f) = {(x, y)∈U | f(x)>f(y)}, all the pairs violating monotonicity.
- $\delta(f) = |\Delta(f)| / |U|$.

Upper Bound on δ

- In order to make *f* monotone, one output from each violating pair must be changed.
- Every string belongs to at most *n* pairs.
- The number of changes is $\epsilon(f)2^n \ge |\Delta(f)|/n = \delta(f)|U|/n = \delta(f)2^{n-1}$
- Thus, $\delta(f) \leq 2\varepsilon(f)$.

Definitions

Function *S_i(f*):

- If $f(x_i(0)) \le f(x_i(1)), S_i(f)(x) = f(x)$.
- Otherwise, $S_i(f)(x) = 1 f(x)$.
- $D_i(f) = |\{x \mid S_i(f)(x) \neq f(x)\}|.$
- $\sum D_i(f) = 2 |\Delta(f)|$.

Non Decreasing Monotonicity

- Lemma: $D_j(S_i(f)) \le D_j(f)$.
- Let x be such that $S_i(f)(x) \neq S_i(S_i(f))(x)$.
- Define $h(a,b)=S_i(f)(x^{ij}(a,b))$.

Non Decreasing Monotonicity

Possible values of h(a,b):

• In all cases, there is a unique y with $f(y) \neq S_j(f)(y)$.

Lower Bound on δ

• By inductive application of the lemma, $D_i(S_{i-1}...S_1(f)) \leq D_i(f).$

- $g = S_n S_{n-1} \dots S_2 S_1(f)$.
- g is monotone, so $\varepsilon(f) \leq \operatorname{dist}(f,g)$.

Lower Bound on δ

- $\delta(f) = |\Delta(f)|/|U|$.
- $\sum D_i(f) = 2 |\Delta(f)|$.
- $\varepsilon(f) \leq \operatorname{dist}(f,g)$.
- $2^n \operatorname{dist}(f,g) \leq \sum D_i(S_{i-1}...S_1(f)) \leq \sum D_i(f).$
- $\delta(f) = |\Delta(f)|/|U| = 2^{-n} \sum D_i(f)/n \ge \operatorname{dist}(f,g)/n \ge \varepsilon(f)/n.$

• For $\varepsilon > 0$, there are functions g and h such that: $\varepsilon(g), \varepsilon(h) = \varepsilon - o(\varepsilon)$ $\delta(g) = 2\varepsilon/n$ $\delta(h) = \varepsilon$

- Let *g* be an anti-dictatorship function (1 if *x*₁=0, 0 otherwise).
- $\delta(g) = 1/n$.
- ε(g) = ½, since there is a perfect matching between the set of values with x₁=0 and x₁=1, and at least one value in each pair must be modified.

- Consider the boolean hypercube as a directed graph, where the directed edges are from
 (x₁x₂...x_{i-1}0x_{i+1}...x_n) to (x₁x₂...x_{i-1}1x_{i+1}...x_n).
- Let L_i be the set of vertices with hamming weight i.
- There are only edges from L_i to L_{i+1} .
- Let *h* be the function receiving *i* mod 2 on L_i .
- $\delta(h) = \frac{1}{2}$.

- Consider a pair of layers with all violating edges between them.
- Using Hall's Theorem, there is a matching containing all the vertices of the smaller layer.
- The number of unmatched vertices is at most

 $\sum ||L_{2i}| - |L_{2i-1}|| \le 2 |L_{[n/2]}| = O(2^n / \sqrt{n})$

• $\varepsilon(h) = \frac{1}{2} - O(1/\sqrt{n}).$

These results can be extended to general values of ε, by considering only vertices with a certain suffix.

Extending the Domain

For $f \in \{1...d\}^n \rightarrow \{0,1\}$:

- 1. Uniformly at random select $i \in \{1,...,n\}$ and $x \in \{1...d\}^n$.
- 2. According to some distribution *p*, select *a*<*b*.
- 3. If $f(x^i(a)) \le f(x^i(b))$ accept, otherwise reject.

Extending the Domain

• There is an algorithm with query complexity $O(q_p(n,\varepsilon,d))$ that always accepts monotone functions and rejects function that are ε -far from monotone with constant probability.

Extending the Domain

 Using similar arguments, it is possible to show that

> $E_{i,y}[\delta(f \circ y^{i}))] \leq \delta(f)$ $\varepsilon(f)/2n \leq E_{i,y}[\varepsilon(f \circ y^{i})]$

- Hence, enough to lower bound $\delta(f \circ y^i)$ in terms of $\varepsilon(f \circ y^i)$.
- $f \circ y^i$ is a function from $\{1...d\}$ to $\{0,1\}$.

- Uniform over all pairs (*a*, *a*+1).
- If *f* is non monotone, There is at least (and possibly at most) one pair (*a*, *a*+1) such that *f*(*a*)>*f*(*a*+1).
- There are *d*-1 pairs and ε(*f*)≤½.
- $2\varepsilon(f)/(d-1) \leq \delta(f)$.
- $O(dn/\varepsilon)$ repetitions suffice.

• Uniform over all pairs (*a*, *b*) such that *a*<*b*.

f	0	0	1	1	0	1	0	0	1	0	1	1	1	1
<i>f</i> *	0	0	0	0	0	0	1	1	1	1	1	1	1	1

- 2*e* difference between *f* and *f**.
- $\varepsilon(f) \leq 2e/d$.
- $\delta(f) \geq 2(e/d)^2 \geq \varepsilon(f)^2/2$.

- $\mathsf{E}_{i,y}[\delta(f \circ y^i)] \ge \mathsf{E}_{i,y}[\varepsilon(f \circ y^i)^2] \ge (\varepsilon(f)/2n)^2.$
- $O(n^2/\varepsilon^2)$ repetitions suffice.

- The distribution is uniform over P, where P is the set containing all pairs {a, b} such that 2^k divides a, but 2^{k+1} does not divide a and b, and |a-b|≤2^k.
- There are O(dlogd) such pairs: each *i* is a member of at most O(logd) pairs, by considering the binary representation of *i*.
- Claim: there are $\Omega(d\epsilon(f))$ violating pairs.

- Consider *P* as directed edges on a graph, where the direction is towards the larger number.
- If *a>b* there is a directed path of length at most 2 from *b* to *a*.
- Let *i* be the MSB where *a* and *b* differ. Then, $(a_1a_2...a_{i-1}10...0)=(b_1b_2...b_{i-1}10...0)$ is the middle vertex in the path.

- 2e difference between f and f*.
- $\varepsilon(f) \leq 2e/d$.
- There are least *e*=Ω(*d*ε(*f*)) edge disjoint paths with a violating edge.
- $\delta(f) = \Omega(d\varepsilon(f)/d\log d) = \Omega(\varepsilon(f)/\log d).$
- O(*n*log*d*/ε) repetitions suffice.

Extending the Range

For $f \in \{1...d\}^n \rightarrow \{0...c\}$:

- 1. Uniformly at random select $i \in \{1, ..., n\}$ and $x \in \{1, ..., n\}$.
- 2. According to some distribution *p*, select *a*<*b*.
- 3. If $f(x^i(\alpha)) \le f(x^i(b))$ accept, otherwise reject.

Extending the Range

- Define $f_i(x)$ to be 0 if f(x) < i, 1 otherwise.
- Then

 $\varepsilon(f) \leq \sum \varepsilon(f_i)$ $\delta(f) \geq \delta(f_i)$

Which implies an additional multiplicative factor of *c* to the query complexity.

Extending the Range

- It is possible to show O(nlogdlogc/ε) queries suffice.
- A different algorithm can achieve query complexity of $O((n/\varepsilon)\log^2(n/\varepsilon))$.

Unateness

- A function $f \in \{0,1\}^n \rightarrow \{0,1\}$ is unate if there is $a \in \{0,1\}^n$ such that $f(x \oplus a)$ is monotone.
- A DNF formula where every variable is either always negated or never negated.
- Similar tester; O(n^{1.5}/ε) pairs to find evidence for non unateness (using the generalized birthday paradox).

Improved Testing Algorithms for Monotonicity

Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, Alex Samorodnitsky

Definitions

- S[f,a,b] changes the range of f to be between a and b by changing all values that are more than b and less than a to be b and a respectively.
- *M*[*f*] arbitrary monotone function closest to *f*.

Definitions

- C[f,a,b] if S[f,a,b] is different than M[S[f,a,b]], gives the value of M[S[f,a,b]], otherwise the value of f.
- dist(f, C[f,a,b]) = $\varepsilon(S[f,a,b])$.

Properties of C[f,a,b]

- Does not add violating pairs.
- Has no violating pairs with values crossing the interval [a,b].
- If (y,x) is a violating pair with C[f,a,b](x) < C[f,a,b](y) then $f(x) \le C[f,a,b](x)$, $C[f,a,b](y) \le f(y)$.
- Proof by case analysis.

- $g_1 = S[f, c/2-1, c/2]$ $f_1 = C[f, c/2-1, c/2]$
- $g_2 = S[f_1, 0, c/2-1]$ $f_2 = C[f_1, 0, c/2-1]$
- $g_3 = S[f_2, c/2, c]$ $f_3 = C[f_2, c/2, c]$
- $\delta(f) \ge \delta(g_1)$, since S does not add violating pairs.
- $\delta(f) \ge \delta(g_2) + \delta(g_3)$, since the set of violating pairs of g_2 and g_3 is disjoint.

- $g_1 = S[f, c/2-1, c/2]$ $f_1 = C[f, c/2-1, c/2]$
- $g_2 = S[f_1, 0, c/2-1]$ $f_2 = C[f_1, 0, c/2-1]$
- $g_3 = S[f_2, c/2, c]$ $f_3 = C[f_2, c/2, c]$
- f₃ is monotone, since it has no violating pairs in the intervals (or crossing them) [c/2-1,c/2], [0, c/2-1], [c/2, c].

- $g_1 = S[f, c/2-1, c/2]$ $f_1 = C[f, c/2-1, c/2]$
- $g_2 = S[f_1, 0, c/2-1]$ $f_2 = C[f_1, 0, c/2-1]$
- $g_3 = S[f_2, c/2, c]$ $f_3 = C[f_2, c/2, c]$
- $\varepsilon(f) \leq \operatorname{dist}(f,f_3) \leq \operatorname{dist}(f,f_1) + \operatorname{dist}(f_1,f_2) + \operatorname{dist}(f_2,f_3)$ $\leq \varepsilon(g_1) + \varepsilon(g_2) + \varepsilon(g_3).$

- Assume *c*=2^s.
- Then, there is K such that $\varepsilon(f) \le Ks\delta(f)$ (for s=1 already proved with $K=O(n\log d)$):

$$\begin{split} &\varepsilon(f) \leq \varepsilon(g_1) + \varepsilon(g_2) + \varepsilon(g_3) \leq \\ &K(\delta(g_1) + (s-1)\delta(g_2) + (s-1)\delta(g_3)) \leq \\ &K(\delta(f) + (s-1)\delta(f)) = Ks\delta(f) \end{split}$$