Fast Computation of Low Rank Matrix Approximations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

by Dimitris Achlioptas and Frank McSherry Presentation: Boris Temkin

Motivation

Idea of Algorithm

Definitions

Quantization

Sparsification

Adaptive Non-Uniform Sampling

Practical considerations

Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Truncated SVD

$$\blacktriangleright A = U \Sigma V^T$$

$$\blacktriangleright A_k = U \Sigma_k V^T$$

Optimal Low Rank Matrix Approximation

Given $m \times n$ real valued matrix A and integer k, find a $m \times n$ matrix A_k which minimizes $||A - A_k||$ over all matrices of rank k.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Optimal Low Rank Approximation Algorithms

- Truncated SVD
- Orthogonal Iteration
- Lanczos Iteration

Motivation

Used in areas

- Computer Vision
- Information Retrieval
- Machine Learning

Used for

Correlation Extraction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Noise Elimination

Near Optimal Approximation

Given $m \times n$ matrix A, integer k and $\delta > 0$, find $m \times n$ matrix B such that

▶ *B_k* is easy to compute

$$||A - B_k|| \leq ||A - A_k|| + \delta$$

Approaches

- Sparsification
- Quantization

Definitions

For any matrix M and integer k, Norms

► Frobenius Norm

$$\|M\|_F = \sqrt{\sum_{i,j} M_{ij}^2}$$

Second Norm

$$\|M\|_2 = \max_{\|x\|_2=1} \|Mx\|_2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fact

•
$$||M_k||_F \le \sqrt{k} ||M||_2$$

• $||M_k||_2 = ||M||_2$

Mental experement

Gaussian matrix

Let G be a matrix whose entries are independent Gaussian random variables with mean 0 and variance σ^2 . If σ is not too big, then $||A - (A + G)_k|| \approx ||A - A_k||$

Example

Should it be Gaussian?

It is enough that G is a random matrix such that

- Entries are independent
- ▶ Mean of *G_{ij}* is zero
- ▶ Variance of *G_{ij}* is small

Example

Set $G_{ij} = \pm A_{ij}$ with equal probability, independently for all i, j.

Lemma

Let A and N be any matrices and write B = A + N. Then

•
$$||A - B_k||_2 \leq ||A - A_k||_2 + 2||N_k||_2$$

•
$$||A - B_k||_F \leq ||A - A_k||_F + ||N_k||_F + 2\sqrt{||N_k||_F ||A_k||_F}$$

$$||A - B_k||_2 \leq ||A - B||_2 + ||B - B_k||_2 \leq ||A - B||_2 + ||B - A_k||_2 \leq ||A - B||_2 + ||B - A||_2 + ||A - A_k||_2 = ||A - A_k|| + 2||A - B||_2 = ||A - A_k|| + 2||(A - B)_k||_2$$

<□ > < @ > < E > < E > E のQ @

Lemma

Let A and N be any matrices and write B = A + N. Then

•
$$||A - B_k||_2 \leq ||A - A_k||_2 + \underbrace{2||N_k||_2}_{\delta}$$

• $||A - B_k||_F \leq ||A - A_k||_F + \underbrace{||N_k||_F + 2\sqrt{||N_k||_F ||A_k||_F}}_{\delta}$

Theorem (w/o proof)

Given $m \times n$ matrix A such that $m \leq n$ and $(m + n) \geq 152$, fixed $\epsilon > 0$ and $\Theta > 0$. Let

$$K = \left(\frac{\log(1+\epsilon)}{2\log(m+n)}\right)^2 \times \sigma\sqrt{m+n}$$

Let B be a random matrix whose entries are independent random variables such that for all i, j

- $\blacktriangleright \mathbb{E}(B_{ij}) = A_{ij}$
- $Var(B_{ij}) \leq \sigma^2$
- B_{ij} takes values on interval of length K

Then

$$\mathbb{P}r\left[\|A-B\|_2 \ge 2(1+\epsilon+\Theta)\sigma\sqrt{m+n}\right] < 2\exp\left(-\frac{16\Theta^2}{\epsilon^4}(\log n)^4\right)$$

Quantization

Theorem (quantization)

Let A be any $m \times n$ matrix where $m \leq n$ and $b = \max_{ij} |A_{ij}|$. Let B be a random $m \times n$ matrix whose entries are independently distributed as

Then, for large enough n, with probability at least $1 - \exp(-19(\log n)^4)$

•
$$||(A - B)_k||_2 < 4b\sqrt{n}$$

• $||(A - B)_k||_F < 4b\sqrt{kn}$

Apply theorem with $\epsilon = 3/10$ and $\Theta = 1/10$.

►
$$\mathbb{E}[B_{ij}] = A_{ij}, \sigma = b$$

► For $(m + n) = 3.08 + E9, K = 2.008b \Rightarrow K \ge 2b$.

Apply theorem with $\epsilon = 3/10$ and $\Theta = 1/10$.

$$\mathbb{E}[B_{ij}] = A_{ij}, \ \sigma = b$$

$$\mathbb{F}\text{or} \ (m+n) = 3.08 + E9, \ K = 2.008b \Rightarrow K \ge 2b.$$

$$\mathbb{P}r\left[\|A - B\|_2 \ge \underbrace{2(1+\epsilon+\Theta)}_{\approx 3.9598/\sqrt{2}} \underbrace{\sigma}_{b} \underbrace{\sqrt{m+n}}_{\leqslant\sqrt{2n}} \right] < 2\exp\left(\frac{16\Theta^2}{\epsilon^4}(\log n)^4\right)$$

Apply theorem with $\epsilon=3/10$ and $\Theta=1/10.$

$$\mathbb{E}[B_{ij}] = A_{ij}, \ \sigma = b$$

$$\mathbb{F}\text{or} \ (m+n) = 3.08 + E9, \ K = 2.008b \Rightarrow K \ge 2b.$$

$$\mathbb{P}r\left[\|A - B\|_2 \ge \underbrace{2(1 + \epsilon + \Theta)\sigma\sqrt{m+n}}_{\leqslant 4b\sqrt{n}} \right] < \underbrace{2\exp\left(\frac{16\Theta^2}{\epsilon^4}(\log n)^4\right)}_{\leqslant \exp(-19(\log n)^4)}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

(uniform version)

Theorem (uniform sampling)

Let A be any $m \times n$ matrix where $76 \leq m \leq n$ and $b = \max_{ij} |A_{ij}|$. For $p \geq (8 \log n)^4/n$, let B be a random $m \times n$ matrix whose entries are independently distributed as

$$B_{ij} = \left\{ egin{array}{cc} A_{ij}/p & \textit{with probability p} \ & & \ 0 & Otherwise \end{array}
ight.$$

Then with probability at least $1 - exp(-19(\log n)^4)$

•
$$||(A - B)_k||_2 < 4b\sqrt{n/p}$$

• $||(A - B)_k||_F < 4b\sqrt{kn/p}$

Apply theorem with $\epsilon = 3/10$ and $\Theta = 1/10$.

$$\mathbb{E}[B_{ij}] = A_{ij}$$

$$\mathbb{V}ar(B_{ij}) = \frac{(1-p)}{p}A_{ij}^2 \leqslant \frac{b^2}{p} = \sigma^2$$

$$\mathbb{P}r\left[\|A - B\|_2 \geqslant \underbrace{2(1+\epsilon+\Theta)\sigma\sqrt{m+n}}_{\leqslant 4b\sqrt{np}}\right] < \underbrace{2\exp\left(\frac{16\Theta^2}{\epsilon^4}(\log n)^4\right)}_{\leqslant \exp(-19(\log n)^4)}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Apply theorem with $\epsilon = 3/10$ and $\Theta = 1/10$.

•
$$\mathbb{E}[B_{ij}] = A_{ij}$$

• $\mathbb{V}ar(B_{ij}) = \frac{(1-p)}{p}A_{ij}^2 \leqslant \frac{b^2}{p} = \sigma^2$

$$\mathcal{K} = \left(\frac{\log(1+\epsilon)}{2\log(m+n)}\right)^2 \times \frac{b}{\sqrt{p}}\sqrt{m+n} \ge \frac{2b}{p} \iff p \ge \left(\frac{2\sqrt{2}\log(m+n)}{\log(1+\epsilon)}\right)^4 \frac{1}{m+n}$$

$$\left(\underbrace{\frac{2\sqrt{2}}{\log(1+3/10)}}_{\approx 7.4725}\right)^4 \frac{\left(\log(m+n)\right)^4}{m+n} \leqslant \frac{\left(8\log n\right)^4}{n} \leqslant p$$

Remark: $\log^4(a)/a$ decreasing for a > 55.

(non-uniform version)

May it be better?

Yes, by non-uniform sampling with probability $p_{ij} \leqslant p$ such that

$$\blacktriangleright \mathbb{E}[B_{ij}] = A_{ij}$$

•
$$\mathbb{V}ar(B_{ij}) \leqslant \sigma^2 = \frac{b^2}{p}$$

• B_{ij} taken from interval of length K.

(non-uniform version)

May it be better?

Yes, by non-uniform sampling with probability $p_{ij} \leq p$ such that

$$\blacktriangleright \mathbb{E}[B_{ij}] = A_{ij}$$

•
$$\mathbb{V}ar(B_{ij}) \leqslant \sigma^2 = \frac{b^2}{p}$$

• B_{ij} taken from interval of length K.

How to?

• Set
$$B_{ij} = A_{ij}/p_{ij}$$
 with probability $p_{ij} = p \times (A_{ij}/b)^2$

•
$$\mathbb{V}ar(B_{ij}) = \frac{1-p_{ij}}{p_{ij}}A_{ij}^2 = \frac{b^2}{p} - A_{ij}^2 \leqslant \sigma^2$$

• Exected number of non-zero entries: $\sum_{ij} p_{ij} = p ||A||_F^2 / b^2$

(non-uniform version)

May it be better?

Yes, by non-uniform sampling with probability $p_{ij} \leq p$ such that

$$\blacktriangleright \mathbb{E}[B_{ij}] = A_{ij}$$

•
$$\mathbb{V}ar(B_{ij}) \leqslant \sigma^2 = \frac{b^2}{p}$$

• B_{ij} taken from interval of length K.

How to?

► Set
$$B_{ij} = A_{ij}/p_{ij}$$
 with probability $p_{ij} = p \times (A_{ij}/b)^2$
► $\mathbb{V}ar(B_{ij}) = \frac{1-p_{ij}}{p_{ij}}A_{ij}^2 = \frac{b^2}{p} - A_{ij}^2 \leq \sigma^2$

• Exected number of non-zero entries: $\sum_{ij} p_{ij} = p ||A||_F^2 / b^2$

Problem

 $B_{ij} = A_{ij}/p_{ij} = \frac{b^2}{pA_{ij}}$ may violate range constraint! (i.e. 2b/p)

(non-uniform version)

Theorem (non-uniform sampling)

Let A be any $m \times n$ matrix where $76 \leq m \leq n$ and $b = \max_{ij} |A_{ij}|$. For any p > 0, define $\tau_{ij} = p(A_{ij}/b)^2$ and let

$$p_{ij} = \max\{ au_{ij}, \sqrt{ au_{ij} imes (8 \log n)^4 / n}\}$$

Let B be a random $m \times n$ matrix whose entries are independently distributed as

$$B_{ij} = \left\{ egin{array}{cc} A_{ij}/p_{ij} & \mbox{with probability } p_{ij} \ 0 & \mbox{Otherwise} \end{array}
ight.$$

Then with probability at least $1 - exp(-19(\log n)^4)$

•
$$||(A - B)_k||_2 < 4b\sqrt{n/p}$$

• $||(A - B)_k||_F < 4b\sqrt{kn/p}$

Expected number for non-zero entries

- ► Uniform Version: *pmn*
- ► Non-Uniform Version: $pmn \times Avg(A_{ij}/b)^2 + mn \times (8 \log n)^4/n$ (As $p_{ij} \leq \tau_{ij} + (8 \log(n))^4/n$)

Adaptive Non-Uniform Sampling in a Single Pass

$\mathsf{Sample}(\mathsf{s},\,\mathsf{n})$

- 1: Let Q be empty priority queue and let Z = 0
- 2: for all entry A_{ij} do

3:
$$Z \leftarrow Z + A_{ij}^2$$

- 4: Select $r_{ij} \in_R [0,1]$
- 5: $k_{ij} \leftarrow \max\{sA_{ij}^2/r_{ij}, sA_{ij}^2/r_{ij}^2 \times (8 \log n)^4/n\}$
- 6: Insert A_{ij} in Q with key k_{ij}
- 7: Remove from Q all elements with key smaller than Z

- 8: end for
- 9: return Q

Adaptive Non-Uniform Sampling in a Single Pass

Lemma

Let A be $m \times n$ matrix where $76 \le m \le n$. For every s > 0, Sample(s, n) yields a matrix B such that

With probability at least 1 − exp(−19log(n)⁴), the matrix N = A − B satisfies

 $\|N_k\|_2 \leqslant 4\sqrt{n/s} \times \|A\|_F$ and $\|N_k\|_F \leqslant 4\sqrt{kn/s} \times \|A\|_F$

• The expected number of non-zero entries in B is bounded by $s + m(8 \log n)^4$

- Set $p = sb^2/\|A\|_F^2$ then $\tau_{ij} = s(A_{ij}/\|A\|_F)^2$
- $A_{i,j}$ is in Q if and only if

$$sA_{ij}^2/r_{ij} \geqslant \|A\|_F^2$$
 or $sA_{ij}^2/r_{ij}^2 \times (8\log(n))^4/n \geqslant \|A\|_F^2$

(日) (日) (日) (日) (日) (日) (日) (日)

▶ Which equivalent to $r_{ij} \leq p_{ij}$, but r_{ij} choosen i.i.d.

Practical considerations

- Combining Sampling and Quantization
- Computing Optimal Low Rank Approximations