Fast Computation of Low Rank Matrix Approximations

by Dimitris Achlioptas and Frank McSherry
Presentation: Boris Temkin

Motivation

Idea of Algorithm
Definitions

Quantization
Sparsification

Adaptive Non-Uniform Sampling
Practical considerations

Example

Truncated SVD

- $A=U \Sigma V^{T}$
- $A_{k}=U \Sigma_{k} V^{T}$

Optimal Low Rank Matrix Approximation

Given $m \times n$ real valued matrix A and integer k, find a $m \times n$ matrix A_{k} which minimizes $\left\|A-A_{k}\right\|$ over all matrices of rank k.

Optimal Low Rank Approximation Algorithms

- Truncated SVD
- Orthogonal Iteration
- Lanczos Iteration

Motivation

Used in areas

- Computer Vision
- Information Retrieval
- Machine Learning

Used for

- Correlation Extraction
- Noise Elimination

Near Optimal Approximation
Given $m \times n$ matrix A, integer k and $\delta>0$, find $m \times n$ matrix B such that

- B_{k} is easy to compute
- $\left\|A-B_{k}\right\| \leqslant\left\|A-A_{k}\right\|+\delta$

Approaches

- Sparsification
- Quantization

Definitions

For any matrix M and integer k,
Norms

- Frobenius Norm

$$
\|M\|_{F}=\sqrt{\sum_{i, j} M_{i j}^{2}}
$$

- Second Norm

$$
\|M\|_{2}=\max _{\|x\|_{2}=1}\|M x\|_{2}
$$

Fact

- $\left\|M_{k}\right\|_{F} \leqslant \sqrt{k}\|M\|_{2}$
- $\left\|M_{k}\right\|_{2}=\|M\|_{2}$

Mental experement

Gaussian matrix
Let G be a matrix whose entries are independent Gaussian random variables with mean 0 and variance σ^{2}. If σ is not too big, then $\left\|A-(A+G)_{k}\right\| \approx\left\|A-A_{k}\right\|$
Example

Should it be Gaussian?

It is enough that G is a random matrix such that

- Entries are independent
- Mean of $G_{i j}$ is zero
- Variance of $G_{i j}$ is small

Example

Set $G_{i j}= \pm A_{i j}$ with equal probability, independently for all i, j.

Lemma

Let A and N be any matrices and write $B=A+N$. Then

- $\left\|A-B_{k}\right\|_{2} \leqslant\left\|A-A_{k}\right\|_{2}+2\left\|N_{k}\right\|_{2}$
- $\left\|A-B_{k}\right\|_{F} \leqslant\left\|A-A_{k}\right\|_{F}+\left\|N_{k}\right\|_{F}+2 \sqrt{\left\|N_{k}\right\|_{F}\left\|A_{k}\right\|_{F}}$

Proof.

$$
\begin{aligned}
\left\|A-B_{k}\right\|_{2} & \leqslant\|A-B\|_{2}+\left\|B-B_{k}\right\|_{2} \\
& \leqslant\|A-B\|_{2}+\left\|B-A_{k}\right\|_{2} \\
& \leqslant\|A-B\|_{2}+\|B-\|_{2}+\left\|A-A_{k}\right\|_{2} \\
& =\left\|A-A_{k}\right\|+2\|A-B\|_{2} \\
& =\left\|A-A_{k}\right\|+2\|\underbrace{(A-B)_{k}}_{N_{k}}\|_{2}
\end{aligned}
$$

Lemma

Let A and N be any matrices and write $B=A+N$. Then

- $\left\|A-B_{k}\right\|_{2} \leqslant\left\|A-A_{k}\right\|_{2}+\underbrace{2\left\|N_{k}\right\|_{2}}_{\delta}$
$-\left\|A-B_{k}\right\|_{F} \leqslant\left\|A-A_{k}\right\|_{F}+\underbrace{\left\|N_{k}\right\|_{F}+2 \sqrt{\left\|N_{k}\right\|_{F}\left\|A_{k}\right\|_{F}}}_{\delta}$

Theorem (w/o proof)

Given $m \times n$ matrix A such that $m \leqslant n$ and $(m+n) \geqslant 152$, fixed $\epsilon>0$ and $\Theta>0$. Let

$$
K=\left(\frac{\log (1+\epsilon)}{2 \log (m+n)}\right)^{2} \times \sigma \sqrt{m+n}
$$

Let B be a random matrix whose entries are independent random variables such that for all i, j

- $\mathbb{E}\left(B_{i j}\right)=A_{i j}$
- $\operatorname{Var}\left(B_{i j}\right) \leqslant \sigma^{2}$
- $B_{i j}$ takes values on interval of length K

Then
$\operatorname{Pr}\left[\|A-B\|_{2} \geqslant 2(1+\epsilon+\Theta) \sigma \sqrt{m+n}\right]<2 \exp \left(-\frac{16 \Theta^{2}}{\epsilon^{4}}(\log n)^{4}\right)$

Quantization

Theorem (quantization)
Let A be any $m \times n$ matrix where $m \leqslant n$ and $b=\max _{i j}\left|A_{i j}\right|$.
Let B be a random $m \times n$ matrix whose entries are independently distributed as

$$
B_{i j}= \begin{cases}+b & \text { with probability } \frac{1}{2}+\frac{A_{i j}}{2 b} \\ -b & \text { with probability } \frac{1}{2}-\frac{A_{i j}}{2 b}\end{cases}
$$

Then, for large enough n, with probability at least $1-\exp \left(-19(\log n)^{4}\right)$

- $\left\|(A-B)_{k}\right\|_{2}<4 b \sqrt{n}$
- $\left\|(A-B)_{k}\right\|_{F}<4 b \sqrt{k n}$

Proof.

Apply theorem with $\epsilon=3 / 10$ and $\Theta=1 / 10$.

- $\mathbb{E}\left[B_{i j}\right]=A_{i j}, \sigma=b$
- For $(m+n)=3.08+E 9, K=2.008 b \Rightarrow K \geqslant 2 b$.

Proof.

Apply theorem with $\epsilon=3 / 10$ and $\Theta=1 / 10$.

- $\mathbb{E}\left[B_{i j}\right]=A_{i j}, \sigma=b$
- For $(m+n)=3.08+E 9, K=2.008 b \Rightarrow K \geqslant 2 b$.

$$
\operatorname{Pr}[\|A-B\|_{2} \geqslant \underbrace{2(1+\epsilon+\Theta)}_{\approx 3.9598 / \sqrt{2}} \underbrace{\sigma}_{b} \underbrace{\sqrt{m+n}}_{\leqslant \sqrt{2 n}}]<2 \exp \left(\frac{16 \Theta^{2}}{\epsilon^{4}}(\log n)^{4}\right)
$$

Proof.

Apply theorem with $\epsilon=3 / 10$ and $\Theta=1 / 10$.

- $\mathbb{E}\left[B_{i j}\right]=A_{i j}, \sigma=b$
- For $(m+n)=3.08+E 9, K=2.008 b \Rightarrow K \geqslant 2 b$.
$\operatorname{Pr}[\|A-B\|_{2} \geqslant \underbrace{2(1+\epsilon+\Theta) \sigma \sqrt{m+n}}_{\leqslant 4 b \sqrt{n}}]<\underbrace{2 \exp \left(\frac{16 \Theta^{2}}{\epsilon^{4}}(\log n)^{4}\right)}_{\leqslant \exp \left(-19(\log n)^{4}\right)}$

Sparsification

(uniform version)

Theorem (uniform sampling)
Let A be any $m \times n$ matrix where $76 \leqslant m \leqslant n$ and $b=\max _{i j}\left|A_{i j}\right|$. For $p \geqslant(8 \log n)^{4} / n$, let B be a random $m \times n$ matrix whose entries are independently distributed as

$$
B_{i j}= \begin{cases}A_{i j} / p & \text { with probability } p \\ 0 & \text { Otherwise }\end{cases}
$$

Then with probability at least $1-\exp \left(-19(\log n)^{4}\right)$

- $\left\|(A-B)_{k}\right\|_{2}<4 b \sqrt{n / p}$
- $\left\|(A-B)_{k}\right\|_{F}<4 b \sqrt{k n / p}$

Proof.

Apply theorem with $\epsilon=3 / 10$ and $\Theta=1 / 10$.

- $\mathbb{E}\left[B_{i j}\right]=A_{i j}$
- $\operatorname{Var}\left(B_{i j}\right)=\frac{(1-p)}{p} A_{i j}^{2} \leqslant \frac{b^{2}}{p}=\sigma^{2}$

$$
\operatorname{Pr}[\|A-B\|_{2} \geqslant \underbrace{2(1+\epsilon+\Theta) \sigma \sqrt{m+n}}_{\leqslant 4 b \sqrt{n p}}]<\underbrace{2 \exp \left(\frac{16 \Theta^{2}}{\epsilon^{4}}(\log n)^{4}\right)}_{\leqslant \exp \left(-19(\log n)^{4}\right)}
$$

Proof.

Apply theorem with $\epsilon=3 / 10$ and $\Theta=1 / 10$.

- $\mathbb{E}\left[B_{i j}\right]=A_{i j}$
- $\operatorname{Var}\left(B_{i j}\right)=\frac{(1-p)}{p} A_{i j}^{2} \leqslant \frac{b^{2}}{p}=\sigma^{2}$

$$
\begin{array}{r}
K=\left(\frac{\log (1+\epsilon)}{2 \log (m+n)}\right)^{2} \times \frac{b}{\sqrt{p}} \sqrt{m+n} \geqslant \frac{2 b}{p} \Longleftrightarrow \\
p \geqslant\left(\frac{2 \sqrt{2} \log (m+n)}{\log (1+\epsilon)}\right)^{4} \frac{1}{m+n}
\end{array}
$$

$$
(\underbrace{\frac{2 \sqrt{2}}{\log (1+3 / 10)}}_{\approx 7.4725})^{4} \frac{(\log (m+n))^{4}}{m+n} \leqslant \frac{(8 \log n)^{4}}{n} \leqslant p
$$

Remark: $\log ^{4}(a) / a$ decreasing for $a>55$.

Sparsification

(non-uniform version)
May it be better?
Yes, by non-uniform sampling with probability $p_{i j} \leqslant p$ such that

- $\mathbb{E}\left[B_{i j}\right]=A_{i j}$
- $\operatorname{Var}\left(B_{i j}\right) \leqslant \sigma^{2}=\frac{b^{2}}{p}$
- $B_{i j}$ taken from interval of length K.

Sparsification

(non-uniform version)

May it be better?

Yes, by non-uniform sampling with probability $p_{i j} \leqslant p$ such that

- $\mathbb{E}\left[B_{i j}\right]=A_{i j}$
- $\operatorname{Var}\left(B_{i j}\right) \leqslant \sigma^{2}=\frac{b^{2}}{p}$
- $B_{i j}$ taken from interval of length K.

How to?

- Set $B_{i j}=A_{i j} / p_{i j}$ with probability $p_{i j}=p \times\left(A_{i j} / b\right)^{2}$
- $\operatorname{Var}\left(B_{i j}\right)=\frac{1-p_{i j}}{p_{i j}} A_{i j}^{2}=\frac{b^{2}}{p}-A_{i j}^{2} \leqslant \sigma^{2}$
- Exected number of non-zero entries: $\sum_{i j} p_{i j}=p\|A\|_{F}^{2} / b^{2}$

Sparsification

(non-uniform version)

May it be better?

Yes, by non-uniform sampling with probability $p_{i j} \leqslant p$ such that

- $\mathbb{E}\left[B_{i j}\right]=A_{i j}$
- $\operatorname{Var}\left(B_{i j}\right) \leqslant \sigma^{2}=\frac{b^{2}}{p}$
- $B_{i j}$ taken from interval of length K.

How to?

- Set $B_{i j}=A_{i j} / p_{i j}$ with probability $p_{i j}=p \times\left(A_{i j} / b\right)^{2}$
- $\operatorname{Var}\left(B_{i j}\right)=\frac{1-p_{i j}}{p_{i j}} A_{i j}^{2}=\frac{b^{2}}{p}-A_{i j}^{2} \leqslant \sigma^{2}$
- Exected number of non-zero entries: $\sum_{i j} p_{i j}=p\|A\|_{F}^{2} / b^{2}$

Problem
$B_{i j}=A_{i j} / p_{i j}=\frac{b^{2}}{p A_{i j}}$ may violate range constraint! (i.e. $2 b / p$)

Sparsification

(non-uniform version)
Theorem (non-uniform sampling)
Let A be any $m \times n$ matrix where $76 \leqslant m \leqslant n$ and $b=\max _{i j}\left|A_{i j}\right|$. For any $p>0$, define $\tau_{i j}=p\left(A_{i j} / b\right)^{2}$ and let

$$
p_{i j}=\max \left\{\tau_{i j}, \sqrt{\tau_{i j} \times(8 \log n)^{4} / n}\right\}
$$

Let B be a random $m \times n$ matrix whose entries are independently distributed as

$$
B_{i j}= \begin{cases}A_{i j} / p_{i j} & \text { with probability } p_{i j} \\ 0 & \text { Otherwise }\end{cases}
$$

Then with probability at least $1-\exp \left(-19(\log n)^{4}\right)$

- $\left\|(A-B)_{k}\right\|_{2}<4 b \sqrt{n / p}$
- $\left\|(A-B)_{k}\right\|_{F}<4 b \sqrt{k n / p}$

Expected number for non-zero entries

- Uniform Version: pmn
- Non-Uniform Version: $p m n \times \operatorname{Avg}\left(A_{i j} / b\right)^{2}+m n \times(8 \log n)^{4} / n$ (As $\left.p_{i j} \leqslant \tau_{i j}+(8 \log (n))^{4} / n\right)$

Adaptive Non-Uniform Sampling in a Single Pass

Sample(s, n)
1: Let Q be empty priority queue and let $Z=0$
2: for all entry $A_{i j}$ do
3: $\quad Z \leftarrow Z+A_{i j}^{2}$
4: \quad Select $r_{i j} \in_{R}[0,1]$
5: $\quad k_{i j} \leftarrow \max \left\{s A_{i j}^{2} / r_{i j}, s A_{i j}^{2} / r_{i j}^{2} \times(8 \log n)^{4} / n\right\}$
6: \quad Insert $A_{i j}$ in Q with key $k_{i j}$
7: \quad Remove from Q all elements with key smaller than Z
8: end for
9: return Q

Adaptive Non-Uniform Sampling in a Single Pass

Lemma

Let A be $m \times n$ matrix where $76 \leqslant m \leqslant n$. For every $s>0$, Sample(s, n) yields a matrix B such that

- With probability at least $1-\exp \left(-19 \log (n)^{4}\right)$, the matrix $N=A-B$ satisfies

$$
\left\|N_{k}\right\|_{2} \leqslant 4 \sqrt{n / s} \times\|A\|_{F} \quad \text { and } \quad\left\|N_{k}\right\|_{F} \leqslant 4 \sqrt{k n / s} \times\|A\|_{F}
$$

- The expected number of non-zero entries in B is bounded by $s+m(8 \log n)^{4}$

Proof.

- Set $p=s b^{2} /\|A\|_{F}^{2}$ then $\tau_{i j}=s\left(A_{i j} /\|A\|_{F}\right)^{2}$
- $A_{i, j}$ is in Q if and only if

$$
s A_{i j}^{2} / r_{i j} \geqslant\|A\|_{F}^{2} \quad \text { or } \quad s A_{i j}^{2} / r_{i j}^{2} \times(8 \log (n))^{4} / n \geqslant\|A\|_{F}^{2}
$$

- Which equivalent to $r_{i j} \leqslant p_{i j}$, but $r_{i j}$ choosen i.i.d.

Practical considerations

- Combining Sampling and Quantization
- Computing Optimal Low Rank Approximations

