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Example

Truncated SVD

I A = UΣV T

I Ak = UΣkV T



Optimal Low Rank Matrix Approximation

Given m × n real valued matrix A and integer k, find a m × n
matrix Ak which minimizes ‖A− Ak‖ over all matrices of rank k .

Optimal Low Rank Approximation Algorithms

I Truncated SVD

I Orthogonal Iteration

I Lanczos Iteration



Motivation

Used in areas

I Computer Vision

I Information Retrieval

I Machine Learning

Used for

I Correlation Extraction

I Noise Elimination



Near Optimal Approximation

Given m × n matrix A, integer k and δ > 0, find m × n matrix B
such that

I Bk is easy to compute

I ‖A− Bk‖ 6 ‖A− Ak‖+ δ

Approaches

I Sparsification

I Quantization



Definitions

For any matrix M and integer k ,

Norms

I Frobenius Norm

‖M‖F =

√∑
i ,j

M2
ij

I Second Norm
‖M‖2 = max

‖x‖2=1
‖Mx‖2

Fact

I ‖Mk‖F 6
√

k‖M‖2
I ‖Mk‖2 = ‖M‖2



Mental experement

Gaussian matrix
Let G be a matrix whose entries are independent Gaussian random
variables with mean 0 and variance σ2. If σ is not too big, then
‖A− (A + G )k‖ ≈ ‖A− Ak‖

Example



Should it be Gaussian?
It is enough that G is a random matrix such that

I Entries are independent

I Mean of Gij is zero

I Variance of Gij is small

Example

Set Gij = ±Aij with equal probability, independently for all i , j .



Lemma
Let A and N be any matrices and write B = A + N. Then

I ‖A− Bk‖2 6 ‖A− Ak‖2 + 2‖Nk‖2

I ‖A− Bk‖F 6 ‖A− Ak‖F + ‖Nk‖F + 2
√
‖Nk‖F‖Ak‖F



Proof.

‖A− Bk‖2 6 ‖A− B‖2 + ‖B − Bk‖2
6 ‖A− B‖2 + ‖B − Ak‖2
6 ‖A− B‖2 + ‖B − A‖2 + ‖A− Ak‖2
= ‖A− Ak‖+ 2‖A− B‖2
= ‖A− Ak‖+ 2‖ (A− B)k︸ ︷︷ ︸

Nk

‖2



Lemma
Let A and N be any matrices and write B = A + N. Then

I ‖A− Bk‖2 6 ‖A− Ak‖2 + 2‖Nk‖2︸ ︷︷ ︸
δ

I ‖A− Bk‖F 6 ‖A− Ak‖F + ‖Nk‖F + 2
√
‖Nk‖F‖Ak‖F︸ ︷︷ ︸
δ



Theorem (w/o proof)

Given m × n matrix A such that m 6 n and (m + n) > 152, fixed
ε > 0 and Θ > 0. Let

K =

(
log(1 + ε)

2 log(m + n)

)2

× σ
√

m + n

Let B be a random matrix whose entries are independent random
variables such that for all i , j

I E(Bij) = Aij

I Var(Bij) 6 σ2

I Bij takes values on interval of length K

Then

Pr
[
‖A− B‖2 > 2(1 + ε+ Θ)σ

√
m + n

]
< 2 exp

(
−16Θ2

ε4
(log n)4

)



Quantization

Theorem (quantization)

Let A be any m × n matrix where m 6 n and b = maxij |Aij |.
Let B be a random m × n matrix whose entries are independently
distributed as

Bij =


+b with probability 1

2 +
Aij

2b

−b with probability 1
2 −

Aij

2b

Then, for large enough n,
with probability at least 1− exp(−19(log n)4)

I ‖(A− B)k‖2 < 4b
√

n

I ‖(A− B)k‖F < 4b
√

kn



Proof.
Apply theorem with ε = 3/10 and Θ = 1/10.

I E[Bij ] = Aij , σ = b

I For (m + n) = 3.08 + E 9, K = 2.008b ⇒ K > 2b.



Proof.
Apply theorem with ε = 3/10 and Θ = 1/10.

I E[Bij ] = Aij , σ = b

I For (m + n) = 3.08 + E 9, K = 2.008b ⇒ K > 2b.

Pr

‖A− B‖2 > 2(1 + ε+ Θ)︸ ︷︷ ︸
≈3.9598/

√
2

σ︸︷︷︸
b

√
m + n︸ ︷︷ ︸
6
√

2n

 < 2 exp

(
16Θ2

ε4
(log n)4

)



Proof.
Apply theorem with ε = 3/10 and Θ = 1/10.

I E[Bij ] = Aij , σ = b

I For (m + n) = 3.08 + E 9, K = 2.008b ⇒ K > 2b.

Pr

‖A− B‖2 > 2(1 + ε+ Θ)σ
√

m + n︸ ︷︷ ︸
64b
√

n

 < 2 exp

(
16Θ2

ε4
(log n)4

)
︸ ︷︷ ︸

6exp(−19(log n)4)



Sparsification
(uniform version)

Theorem (uniform sampling)

Let A be any m × n matrix where 76 6 m 6 n and b = maxij |Aij |.
For p > (8 log n)4/n, let B be a random m × n matrix whose
entries are independently distributed as

Bij =


Aij/p with probability p

0 Otherwise

Then with probability at least 1− exp(−19(log n)4)

I ‖(A− B)k‖2 < 4b
√

n/p

I ‖(A− B)k‖F < 4b
√

kn/p



Proof.
Apply theorem with ε = 3/10 and Θ = 1/10.

I E[Bij ] = Aij

I Var(Bij) = (1−p)
p A2

ij 6 b2

p = σ2

Pr

‖A− B‖2 > 2(1 + ε+ Θ)σ
√

m + n︸ ︷︷ ︸
64b
√

np

 < 2 exp

(
16Θ2

ε4
(log n)4

)
︸ ︷︷ ︸

6exp(−19(log n)4)



Proof.
Apply theorem with ε = 3/10 and Θ = 1/10.

I E[Bij ] = Aij

I Var(Bij) = (1−p)
p A2

ij 6 b2

p = σ2

I

K =

(
log(1 + ε)

2 log(m + n)

)2

× b
√

p

√
m + n >

2b

p
⇐⇒

p >

(
2
√

2 log(m + n)

log(1 + ε)

)4
1

m + n

—————————————————————— 2
√

2

log(1 + 3/10)︸ ︷︷ ︸
≈7.4725


4

(log(m + n))4

m + n
6

(8 log n)4

n
6 p

Remark: log4(a)/a decreasing for a > 55.



Sparsification
(non-uniform version)

May it be better?

Yes, by non-uniform sampling with probability pij 6 p such that

I E[Bij ] = Aij

I Var(Bij) 6 σ2 = b2

p

I Bij taken from interval of length K .

How to?

I Set Bij = Aij/pij with probability pij = p × (Aij/b)2

I Var(Bij) =
1−pij

pij
A2

ij = b2

p − A2
ij 6 σ2

I Exected number of non-zero entries:
∑

ij pij = p‖A‖2F/b2

Problem
Bij = Aij/pij = b2

pAij
may violate range constraint! (i.e. 2b/p)



Sparsification
(non-uniform version)

May it be better?

Yes, by non-uniform sampling with probability pij 6 p such that

I E[Bij ] = Aij

I Var(Bij) 6 σ2 = b2

p

I Bij taken from interval of length K .

How to?

I Set Bij = Aij/pij with probability pij = p × (Aij/b)2

I Var(Bij) =
1−pij

pij
A2

ij = b2

p − A2
ij 6 σ2

I Exected number of non-zero entries:
∑

ij pij = p‖A‖2F/b2

Problem
Bij = Aij/pij = b2

pAij
may violate range constraint! (i.e. 2b/p)



Sparsification
(non-uniform version)

May it be better?

Yes, by non-uniform sampling with probability pij 6 p such that

I E[Bij ] = Aij

I Var(Bij) 6 σ2 = b2

p

I Bij taken from interval of length K .

How to?

I Set Bij = Aij/pij with probability pij = p × (Aij/b)2

I Var(Bij) =
1−pij

pij
A2

ij = b2

p − A2
ij 6 σ2

I Exected number of non-zero entries:
∑

ij pij = p‖A‖2F/b2

Problem
Bij = Aij/pij = b2

pAij
may violate range constraint! (i.e. 2b/p)



Sparsification
(non-uniform version)

Theorem (non-uniform sampling)

Let A be any m × n matrix where 76 6 m 6 n and b = maxij |Aij |.
For any p > 0, define τij = p(Aij/b)2 and let

pij = max{τij ,
√
τij × (8 log n)4/n}

Let B be a random m × n matrix whose entries are independently
distributed as

Bij =


Aij/pij with probability pij

0 Otherwise

Then with probability at least 1− exp(−19(log n)4)

I ‖(A− B)k‖2 < 4b
√

n/p

I ‖(A− B)k‖F < 4b
√

kn/p



Expected number for non-zero entries

I Uniform Version: pmn

I Non-Uniform Version: pmn×Avg(Aij/b)2 + mn× (8 log n)4/n
(As pij 6 τij + (8 log(n))4/n)



Adaptive Non-Uniform Sampling in a Single Pass

Sample(s, n)

1: Let Q be empty priority queue and let Z = 0
2: for all entry Aij do
3: Z ← Z + A2

ij

4: Select rij ∈R [0, 1]
5: kij ← max{sA2

ij/rij , sA2
ij/r2

ij × (8 log n)4/n}
6: Insert Aij in Q with key kij

7: Remove from Q all elements with key smaller than Z
8: end for
9: return Q



Adaptive Non-Uniform Sampling in a Single Pass

Lemma
Let A be m × n matrix where 76 6 m 6 n. For every s > 0,
Sample(s, n) yields a matrix B such that

I With probability at least 1− exp(−19 log(n)4), the matrix
N = A− B satisfies

‖Nk‖2 6 4
√

n/s×‖A‖F and ‖Nk‖F 6 4
√

kn/s×‖A‖F

I The expected number of non-zero entries in B is bounded by
s + m(8 log n)4



Proof.

I Set p = sb2/‖A‖2F then τij = s(Aij/‖A‖F )2

I Ai ,j is in Q if and only if

sA2
ij/rij > ‖A‖2F or sA2

ij/r2
ij × (8 log(n))4/n > ‖A‖2F

I Which equivalent to rij 6 pij , but rij choosen i.i.d.



Practical considerations

I Combining Sampling and Quantization

I Computing Optimal Low Rank Approximations
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