Testing Symmetric Properties of Distributions Paul Valiant, 2008

Presented by Omer Tamuz and Tamar Zondiner

July 8, 2010

A property π

A property of a distribution is a function $\pi : D_n \to \mathbb{R}$, where D_n is the set of probability distributions on [n].

A binary property π^b_a

A property π and pair of real numbers a < b induce a binary property $\pi_a^b : D_n \to \{"yes", "no", \emptyset\}$ defined by:

$$\pi^b_a(p) = \begin{cases} "yes" & \text{if } \pi(p) > b \\ "no" & \text{if } \pi(p) < a \\ \varnothing & \text{otherwise} \end{cases}$$

Let π_a^b be a binary property on D_n .

A tester

An algorithm T is a " π_a^b -tester with sample complexity $k(\cdot)$ " if, given a sample of size k(n) from a distribution $p \in D_n$, algorithm T will:

- accept with probability greater than $\frac{2}{3}$ if $\pi_a^b(p) = "yes"$, and
- reject with probability greater than $\frac{2}{3}$ if $\pi^b_a(p) = "no"$, and

The tester's behavior is unspecified when $\pi_a^b(p) = \phi$, i.e. when $a \le \pi(p) \le b$.

A Symmetric Property

A property π is symmetric if for all distributions p and all permutations σ we have $\pi(p) = \pi(p \circ \sigma)$.

An (ϵ, δ) -weakly continuous property

A property π is (ϵ, δ) -weakly continuous if for all distributions p^+, p^- satisfying $|p^+ - p^-| \le \delta$ we have $|\pi(p^+) - \pi(p^-)| \le \epsilon$.

|x - y| denotes the L_1 distance.

Theorem

Distance from the uniform distribution is a symmetric and (δ, δ) -weakly continuous property.

Proof.

• Let U_n be the uniform distribution on [n].

• Let
$$\pi(p) = |U_n - p|$$
 for $p \in D_n$.

- Let $p^+, p^- \in D_n$ be such that $|p^+ p^-| < \delta$.
- Assume WLOG that $\pi(p^+) \ge \pi(p^-)$.

$$\begin{aligned} |\pi(p^+) - \pi(p^-)| &= |U_n - p^+| - |U_n - p^-| \\ &\leq |U_n - p^-| + |p^+ - p^-| - |U_n - p^-| \\ &= |p^+ - p^-| \leq \delta \end{aligned}$$

Theorem

The entropy is a symmetric and $\left(1, \frac{1}{2 \log n}\right)$ -weakly continuous property.

Proof.

Easy.

Consider a sample of size k from distribution p over [n]. Let h_i be the number of appearances of i in the sample.

The Canonical Tester with parameter heta

- Insert the constraint $\sum_i p_i = 1$.
- ② For each *i* such that $h_i > \theta$ insert the constraint $p_i = \frac{h_i}{k}$. Otherwise insert the constraint $p_i \in [0, \frac{\theta}{k}]$.
- **③** Let P be the set of solutions to these constraints.
- If the set π^b_a(P) (the image of elements of P under π^b_a) contains only "yes" and Ø return "yes". If it contains only "no" and Ø return "no". Otherwise answer arbitrarily.

- It seems plausible that the canonical tester behaves correctly for the high frequency elements.
- The tester effectively discards all information regarding the low frequency elements.
- If we can show that no tester can extract information from these elements then it will follow that the canonical tester is almost optimal.

Not True Theorem

Given a symmetric (ϵ, δ) -weakly continuous property $\pi : D_n \to \mathbb{R}$ and two thresholds a < b, such that the Canonical Tester T^{θ} for $\theta = 600 \log n/\delta^2$ on π^b_a fails to distinguish between $\pi > b$ and $\pi < a$ in k samples, then no tester can distinguish between $\pi > b$ and $\pi < a$ in k samples.

Sadly, this is not true.

Theorem

Given a symmetric (ϵ, δ) -weakly continuous property $\pi : D_n \to \mathbb{R}$ and two thresholds a < b, such that the Canonical Tester T^{θ} for $\theta = 600 \log n/\delta^2$ on π^b_a fails to distinguish between $\pi > b + \epsilon$ and $\pi < a - \epsilon$ in k samples, then no tester can distinguish between $\pi > b - \epsilon$ and $\pi < a + \epsilon$ in $k \cdot \frac{\delta^3}{n^{o(1)}}$ samples. The crux is to prove that the canonical tester does the "right thing" (i.e., nothing!) for the low frequency elements.

Low Frequency Blindness Theorem

Let π be a symmetric property on distributions on [n] that is (ϵ, δ) -weakly continuous. Let p^+, p^- be two distributions that are identical for any index occurring with probability at least $\frac{\theta}{k}$ in either distribution, where $\theta = \frac{600 \log n}{\delta^2}$. If $\pi(p^+) > b$ and $\pi(p^-) < a$, then no tester can distinguish between $\pi > b - \epsilon$ and $\pi < a + \epsilon$ in $k \cdot \frac{\delta^3}{n^{o(1)}}$ samples.

If we could show that such p^+ and p^- exist whenever the canonical tester fails than this would imply the canonical testing theorem. Example: Entropy

Lemma

Given a distribution p and a parameter θ , if we draw k random samples from p then with probability at least $1 - \frac{4}{n}$ the set P constructed by the Canonical Tester will include a distribution \hat{p} such that $|p - \hat{p}| \leq 24\sqrt{\frac{\log n}{\theta}}$.

If $\theta = 600 \log n / \delta^2$ then this reads $|p - \hat{p}| \le \delta$.

Proof.

"The proof is elementary: use Chernoff bounds on each index *i* and then apply the union bound to combine the bounds."

Low Frequency Blindness \Rightarrow Canonical Testing Theorem

Reminder: the canonical testing theorem states that if the canonical tester fails with k samples then any slightly weaker tester also fails.

Proof: Canonical Testing Theorem

- Assume canonical tester says "no" with probability 1/3 to some p for which π(p) > b + ε (so it should have said yes).
- \Rightarrow with probability 1/3 there exists $p^- \in P$ such that $\pi(p^-) < a$.
- By the lemma, P contains some p⁺ such that |p − p⁺| < δ with probability 1 − 4/n. π(p⁺) > b by continuity.
- \Rightarrow there exists a single *P* with both of these properties.
- \Rightarrow there exist p^- and p^+ with the same θ -high-frequency elements such that $\pi(p^-) < a$ and $\pi(p^+) > b$.
- \Rightarrow the theorem follows by application of low frequency blindness.

Histogram

The histogram h of a vector $v = (v_1, \ldots, v_k)$ is a vector such that h_i is the number of components of v with value i.

Fingerprint

A fingerprint f of a vector v is the histogram of the histogram of v.

Example

Let v = (3, 1, 2, 2, 5, 1, 2). Then:

- Its histogram is h = (2, 3, 1, 0, 1).
- Its fingerprint is f = (2, 1, 1).
- We omit the zero component of *f*.

A tester for a symmetric distribution π may consider just the fingerprint of the sample and discard the rest of the information.

Definition

- Let *p* be a distribution on [*n*].
- Let the sample size be k.

•
$$k_i := \mathsf{E}[h_i] = k \cdot p_i$$
.

Let $\lambda_a := \sum_i \text{poi}_{k_i}(a)$. Then $\lambda = \{\lambda_a\}_{a=1}^{\infty}$ is the Poisson moments vector of p for sample size k.

- p has histogram h and fingerprint f.
- The distribution of h_i is well approximated by $poi_{k_i}(\cdot)$.

•
$$\mathsf{E}[f_a] = \sum_i \mathbf{P}[h_i = a] \approx \lambda_a$$
.

Coffee Break

Coffee Break

Theorem

Let π be a symmetric property on distributions on [n] that is (ϵ, δ) -weakly continuous. Let p^+, p^- be two distributions that are identical for any index occurring with probability at least $\frac{\theta}{k}$ in either distribution, where $\theta = \frac{600 \log n}{\delta^2}$. If $\pi(p^+) > b$ and $\pi(p^-) < a$, then no tester can distinguish between $\pi > b - \epsilon$ and $\pi < a + \epsilon$ in $k \cdot \frac{\delta^3}{n^{o(1)}}$ samples. We'll limit our analysis to distributions with low frequencies. Suppose **all** elements have probability $<\frac{\theta}{k}$ where $\theta = \frac{600 \log n}{\delta^2}$.

Lemma

Let π be a symmetric property on distributions on [n] that is (ϵ, δ) -weakly continuous. Let p^+, p^- be two distributions for which all indices occur with probability at most $\frac{\theta}{k}$, where $\theta = \frac{600 \log n}{\delta^2}$. If $\pi(p^+) > b$ and $\pi(p^-) < a$, then no tester can distinguish between $\pi > b - \epsilon$ and $\pi < a + \epsilon$ in $k \cdot \frac{\delta^3}{n^{o(1)}}$ samples. Let p^+ and p^- be **low frequency distributions** such that $\pi(p^+) > b$ and $\pi(p^-) < a$.

- **()** We construct \hat{p}^+ and \hat{p}^- such that
 - $|\hat{p}^{\pm} p^{\pm}| < \delta$, and therefore $\pi(\hat{p}^{+}) > b \epsilon$ and $\pi(\hat{p}^{-}) < a + \epsilon$.
 - \hat{p}^+ and \hat{p}^- have similar **Poisson moments vector** for sample size $\hat{k} = k \frac{\delta^3}{n^{o(1)}}$.
- Por any sample size for which two distributions have similar Poisson moments vectors, they also have similar fingerprints.
- We now have two distributions with similar fingerprints; one has the property and the other doesn't. It is therefore impossible to test for \(\pi_a^b\) with \(\hat{k}\) samples.

Steps two and three are the "Wishful Thinking Theorem".

Wishful Thinking Theorem

- Each component of the fingerprint is a sum of many indicators. For example, f₃ is the sum of the indicators of the events h_i = 3.
- Wishfully assume that the h_i s are independent and distributed Poisson with parameter $k_i = k \cdot p_i$. Then $E[f_a] = Var[f_a] = \lambda_a$.
- Wishfully assume that the f_as are independent and distributed Poisson with parameter λ_a.
- If for p^+ and p^- and each *a* we have that $|\lambda_a^- \lambda_a^+|$ is smaller than $\sqrt{\lambda_a^+}$ then we expect the distributions' fingerprints to be indistinguishable.
- If $\pi(p^+) > b$ and $\pi(p^-) < a$ then no tester can test π_a^b .

Wishful Thinking Theorem

Given an integer $\hat{k} > 0$, let p^+ and p^- be two distributions, all of whose frequencies are at most $\frac{1}{500\hat{k}}$. Let λ^+ and λ^- be their Poisson moments vectors for sample size \hat{k} . If it is the case that

$$\sum_{a} \frac{|\lambda_a^+ - \lambda_a^-|}{\sqrt{1 + \max\{\lambda_a^+, \lambda_a^-\}}} < \frac{1}{25}$$

then it is impossible to test any symmetric property that is true for p^+ and false for p^- in \hat{k} samples.

Reminder: whenever the canonical tester fails we are guaranteed to have such p^+ and p^- .

Wishful Thinking Theorem Overview

- Show $h_i \approx \text{poi}_{k_i}$ (and $h \approx \text{Poi}(kp)$).
- 2 Show $f_a \approx \text{poi}_{\lambda_a}$ (and $f \approx \text{Poi}(\lambda)$).
- **3** Bound $|\operatorname{Poi}(\lambda^+) \operatorname{Poi}(\lambda^-)|$.
- Deduce a bound on $|f^+ f^-|$.
- Finally, conclude that since the fingerprints are indistinguishable (even though the distributions might not be), then the property can't be tested.

Poissonization

A *k*-Poissonized tester T is a function that correctly classifies a property on a distribution p with probability 7/12 on input samples generated in the following way:

- Draw $k' \leftarrow \text{poi}_k$.
- Return k' samples from p.

Lemma

If there exists a k-sample tester T for a property π_a^b then there exists a k-Poissonized tester T' for π_a^b .

- After Poissonization, the histogram component h_i is distributed poi_{ki}, and the different h_is are independent.
- By additivity of expectations and variances $E[f_a] = Var[f_a] = \sum_i poi_{k_i}(a) = \lambda_a$.
- However, the different f_a s aren't independent.

Generalized Multinomial Distribution

Definition: M^{ρ} , the generalized multinomial distribution(ρ)

- Let ρ be a matrix with n rows, such that row ρ_i represents a distribution.
- From each such row, draw one column according to the distribution.
- Return a row vector recording the total number of samples falling into each column (the histogram of the samples).

Lemma

The distribution of fingerprints of poi(k) samples from p (the distribution of f after Poissonization) is the generalized multinomial distribution, M^{ρ} , when using $\rho_i(a) = poi_{k_i}(a)$ to define the rows ρ_i .

Roos's theorem

Given a matrix ρ , letting $\lambda_a = \sum_i \rho_i(a)$ be the vector of column sums, we have

$$|M^{
ho} - \mathsf{Poi}(\lambda)| \le 8.8 \sum_{a} \frac{\sum_{i} \rho_i(a)^2}{\sum_{i} \rho_i(a)}.$$

So, the multivariate Poisson distribution is a good approximation for the fingerprints, if ρ is small enough.

Bounding ρ using the low-frequencies

Suppose that for some $0 < \epsilon \leq \frac{1}{2}$ it holds that $p_i \leq \frac{\epsilon}{k}$. Then $\rho_i(a) = \operatorname{poi}_{k_i}(a) = \frac{e^{-k_i}k_i^a}{a!} = \frac{e^{-k \cdot p_i}(k \cdot p_i)^a}{a!} \leq (k \cdot p_i)^a \leq \epsilon^a$.

Thus:

$$\sum_{a} \frac{\sum_{i} \rho_{i}(a)^{2}}{\sum_{i} \rho_{i}(a)} \leq \sum_{a} \max_{i} \rho_{i}(a) \leq \sum_{a} \epsilon^{a} \leq 2\epsilon$$

and by Roos's theorem:

$$|M^{\rho} - \operatorname{Poi}(\lambda)| \leq 2 \cdot 8.8\epsilon.$$

Bounding the statistical distance between λ^+ and λ^-

The statistical distance between two multivariate Poisson distributions with parameters λ^+,λ^- is bounded by

$$|\mathsf{Poi}(\lambda^+) - \mathsf{Poi}(\lambda^-)| \le 2\sum_a \frac{|\lambda_a^+ - \lambda_a^-|}{\sqrt{1 + \max\{\lambda_a^+, \lambda_a^-\}}}$$

Hence, by the theorem's hypothesis:

$$|\mathsf{Poi}(\lambda^+) - \mathsf{Poi}(\lambda^-)| \le \frac{2}{25}.$$

Wishful Thinking Theorem

Given an integer $\hat{k} > 0$, let p^+ and p^- be two distributions, all of whose frequencies are at most $\frac{1}{500\hat{k}}$. Let λ^+ and λ^- be their Poisson moments vectors for sample size \hat{k} . If it is the case that

$$\sum_{a} \frac{|\lambda_a^+ - \lambda_a^-|}{\sqrt{1 + \max\{\lambda_a^+, \lambda_a^-\}}} < \frac{1}{25}$$

then it is impossible to test any symmetric property that is true for p^+ and false for p^- in \hat{k} samples.

Wishful Thinking Theorem Proof of Wishful Thinking Theorem

Proof.

- $f^{\pm} \sim M^{\rho^{\pm}}$.
- Combining Roos's theorem with the bound on ρ , and assuming that $p_i^{\pm} \leq \frac{1}{500k}$, we get that $|M^{\rho^{\pm}} \text{Poi}(\lambda^{\pm})| \leq \frac{2\cdot8.8}{500} < \frac{1}{25}$.
- The theorem's hypothesis implies $|\operatorname{Poi}(\lambda^+) \operatorname{Poi}(\lambda^-)| \leq \frac{2}{25}$.
- Using the triangle inequality, we get that the statistical distance between the distributions of fingerprints of Poi(k) samples from p⁺ versus p⁻ is at most ⁴/₂₅ < ¹/₆.
- A k-tester (poissonized) must have a gap> ¹/₆ (succeed with probability ⁷/₁₂). This is impossible if |p⁺ p⁻| < 1/6.
- If a *k*-Poissonized tester doesn't exist, then neither does a *k*-tester.

 \Rightarrow it is impossible to test any symmetric property that is true for p^+ and false for p^- in k samples.

Questions?

Thanks!