
Seminar on Sublinear time algorithms 
Lecture 1 

17.3.2010               lecturer: Robert Krauthgamer                      Scriber: Aviv Reznik 

 

Many of the sublinear algorithms are approximate and/or randomized. We will see some examples 

today. 

Diameter of a Metric [Approximate] 
Input: 𝑛 points and all pairwise distances satisfying triangle inequality. 

Goal: Compute the diameter of the set, which is the largest pair-wise distance. 

 

Theorem (by Indyk): There is a deterministic algorithm that approximates the diameter within factor 2 

in time 𝑂 𝑛 . 

The only requirement is that it’s a metric (so we have the triangle inequality) and the distances is 

symmetric. 

 

Algorithm  
Choose 1 point arbitrarily and check the distance between it and all other points. Then take the max. 

Analysis 

Runtime: 𝑂 𝑛  - Obvious. 

Correctness:  

Denote 𝐷𝑖𝑗  as the distance between point 𝑖 and point 𝑗. 

Suppose 𝑂𝑃𝑇 = 𝐷𝑎𝑏  and suppose the arbitrary point we chose is 𝑖. 

By the triangle inequality: 𝑂𝑃𝑇 = 𝐷𝑎𝑏 ≤ 𝐷𝑎𝑖 + 𝐷𝑏𝑖  

At least one of 𝐷𝑎𝑖  or 𝐷𝑖𝑏  is ≥
1

2
𝑂𝑃𝑇. 

So 𝐴𝐿𝐺 ≥
1

2
𝑂𝑃𝑇, which means we have a 2 approximation. 

Finding element in sorted list [Randomized]  
Input: Given a list that is sorted but in a linked list structure. However, it also has direct access. 

(for instance -  an array of elements, where each element points at the index of the next element) 

Goal: Find whether 𝑞 appears in the list. 

 

Theorem (by Chazelle,-Liu-Magen): There is a randomized algorithm that runs in time 𝑂  𝑛  and is 

correct with high probability. The error is one sided – so if 𝑞 is found it is certainly there. If not, then it is 

not there with high probability. 



 

Note: With high probability we mean that it’s bigger than 
2

3
. One can later amplify it if needed. 

 

Algorithm 

Define 𝑡 = 2 𝑛 

1.  Scan the first 𝑡 elements of the list. If 𝑞 was found report it was found. 

2.  Choose at random 𝑘 =  𝑛 elements from the list 

3.  Find which of them is ≤ 𝑞 and take the largest 

4.  Scan the linked list starting from this element for the next 𝑡 elements and report whether 𝑞 was 

found or not. 

 

Analysis 

Runtime: Obviously 𝑂 𝑘 + 𝑡 = 𝑂  𝑛  

Correctness: wlog, 𝑞 in the list. Since if not we will certainly not find it and return the right answer.  Let 

the linked list be: 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛  and suppose that 𝑞 = 𝑎𝑗  

Pr  𝑛𝑜𝑛𝑒 𝑜𝑓 𝑡𝑒 𝑘 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ∈  𝑎𝑗−𝑡+1 ,… , 𝑎𝑗 
𝑞

  ≤  1 −
𝑡

𝑛
 
𝑘
≤ 𝑒−

𝑡𝑘

𝑛 ≤
1

7
. 

It follows that with probability over 
6

7
 the algorithm will sample at least one of 𝑞𝑗−𝑡+1 ,… ,𝑎𝑗 = 𝑞 in 

which case the scan will find 𝑞. 

 

We can even refine the argument. For instance, we can have a witness for not having 𝑞 in the list if 

when scanning we go from a value smaller than 𝑞 to a value that is larger. In addition, we can say we 

scan the list until we find 𝑞 (or find it’s not there) and thus the algorithm will always return the right 

answer but the runtime is randomized (with a small expectation). 

Approximate average degree in a graph 
Input: A connected graph given as an adjacency list. 

Goal: Compute the average degree in the graph. 

 

Theorem [ A weaker version of a theorem by Feige]: There is a randomized algorithm that approximates 

the average degree within a factor of 2 + 𝜖 (for any desired 
1

2
> 𝜖 > 0) in time 𝑂   

1

𝜖
 
𝑂 1 

⋅  𝑛  

 

Algorithm  

1.  Choose a set 𝑆 by picking at random 𝑆 =  
1

𝜖
 
𝑂 1 

⋅  𝑛 vertices. 

2.  Compute the average degree – 𝑑𝑠  



3.  Repeat the above 
8

𝜖
 times and report the smallest value in step 2. 

 

Analysis 

Runtime: 𝑂   
1

𝜖
 
𝑂 1 

⋅  𝑛  – obvious. 

 

Correctness: Let 𝑑𝑠  be the average degree of 𝑆, and let 𝑑 be the average degree in 𝐺 

 

Lemma 1:  In one iteration: 

Pr  𝑑𝑠 <
1

2
 1 − 𝜖 𝑑 ≤

𝜖

64
 

Lemma 2: In one iteration: 

Pr 𝑑𝑠 >  1 + 𝜖 𝑑 ≤ 1 −
𝜖

2
 

 

Given these two lemmas this is how you prove the theorem: 

Pr 𝐴𝐿𝐺 >  1 + 𝜖 𝑑 ≤  1 −
𝜖

2
 

8
𝜖

< 𝑒−4 <
1

8
 

Pr

 
 
 
 

𝐴𝐿𝐺 <
1

2
 1 − 𝜖 𝑑           

=𝑢𝑛𝑖𝑜𝑛  𝑜𝑓  
8

𝜖
  𝑒𝑣𝑒𝑛𝑡𝑠  

 
 
 

≤
8

𝜖
⋅
𝜖

64
=

1

8
⇒  

Algorithm achieves approximation 2 + 𝜖 with probability ≥
3

4
. 

 

Proof of lemma 2: 

Denote 𝑠 =  𝑆  

Let 𝑋𝑖  for 𝑖 = 1,… , 𝑠 be the degree of the 𝑖’th vertex chosen to 𝑆 ⇒ 𝑑𝑠 =
1

𝑠
 𝑋𝑖
𝑠
𝑖=1  and so: 

𝐸 𝑑𝑠 =
1

𝑠
 𝐸 𝑋𝑖 

𝑠

𝑖=1

= 𝑑 

 

Markov’s inequality:  

If 𝑍 ≥ 0 is a random variable, then for all 𝛼 > 1: 

Pr 𝑍 ≥ 𝛼𝐸 𝑍  ≤
1

𝛼
 

 

So by using Markov’s inequality we get: 

Pr 𝑑𝑠 ≥  1 + 𝜖 𝑑 ≤
1

1 + 𝜖
< 1 −

𝜖

2
 

 

Proof of lemma 1: 

Let 𝐻 be the set of  𝜖𝑛 vertices with the highest degree. 



Let 𝐿 = 𝑉\𝐻. 

Wlog, we assume 𝑆 is chosen from 𝐿 (the true 𝑑𝑠  dominates this analysis) 

So now, let 𝑋𝑖  for 𝑖 = 1,… , 𝑠 be the degree of 𝑖’th vertex chosen. 

𝑑𝑠 =
1

𝑠
 𝑋𝑖

𝑠

𝑖=1

 

 

Chernoff bound: 

Let 𝑍𝑖 ∈  0,1  for 𝑖 = 1,… , 𝑠 be independent random variables. Then for all 0 < 𝛿 < 1: 

Pr   𝑍𝑖 ≤  1 − 𝛿 ⋅ 𝐸   𝑍𝑖
𝑖

 

𝑠

𝑖=1

 ≤ 𝑒−𝛿
2⋅
𝐸  𝑍𝑖𝑖  

4  

 

 

Denote 𝑑𝐻  to be the smallest degree in 𝐻. 

Then 1 ≤ 𝑋𝑖 ≤ 𝑑𝐻 

 

Pr 𝑑𝑠 ≤  1 − 𝜖 𝐸 𝑑𝑠  = Pr  
 𝑋𝑖
𝑑𝐻

≤  1 − 𝜖 𝐸  
 𝑥𝑖
𝑑𝐻

  =
𝐿𝑒𝑡  𝑍𝑖=

𝑋𝑖
𝑑𝐻

∈ 0,1 

 

Pr   𝑍𝑖 ≤  1 − 𝜖 𝐸   𝑍𝑖  ≤

𝐶𝑒𝑟𝑛𝑜𝑓𝑓
𝑏𝑜𝑢𝑛𝑑

𝑒−𝜖
2 ⋅
𝐸  𝑍𝑖 

4 = 𝑒
−𝜖2 ⋅

𝐸  𝑋𝑖 
4⋅𝑑𝐻  

𝐸   𝑋𝑖 =  𝑆 ⋅ 𝐸 𝑋1    
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑑𝑒𝑔𝑟𝑒𝑒  𝑖𝑛  𝐿

 

 

So now we would like to find the size of 𝑆 such that we’ll reach our bound. Thus, we’ll split into cases 

based on 𝑑𝐻  

 

Case 1  -  𝑑𝐻 ≥
1

𝜖
 𝐻 : 

Note the following facts: 

(*) Each vertex in  𝐻  has a degree that is higher than 𝑑𝐻  so the sum of all the degrees of vertices in  𝐻  

is larger than  𝐻 ⋅ 𝑑𝐻  

(**) The maximal number of edges of 𝐻 that have both their ends in 𝐻 is the number of possible pairs of 

vertices of 𝐻 -   
 𝐻 
2
 , and so the contribution of those edges to the degrees of the vertices of 𝐻 is at 

most 2 ⋅  
 𝐻 
2
 =  𝐻   𝐻 − 1 ≤  𝐻 2 

 

𝐸 𝑋1 ≥
 ∗ + ∗∗ 𝑑𝐻 𝐻 −  𝐻 2

 𝐿 
=
 𝑑𝐻 −  𝐻  ⋅  𝐻 

 𝐿 
=
 1 −

 𝐻 
𝑑𝐻

 ⋅ 𝑑𝐻 ⋅  𝐻 

 𝐿 
≥

𝑛> 𝐿 

𝑑𝐻≥
1
𝜖
 𝐻  1 − 𝜖 ⋅ 𝑑𝐻 ⋅  𝐻 

𝑛
 

So in this case: 



𝑒
−𝜖2 ⋅

𝐸  𝑋𝑖 
4⋅𝑑𝐻 ≤ 𝑒

−𝜖2 ⋅
𝑠
 1−𝜖 ⋅𝑑𝐻 ⋅ 𝐻 

𝑛
4⋅𝑑𝐻   

Enough to have (up to constants and log  
1

𝜖
  factors): 

𝑠 ⋅ 𝜖2 ⋅  𝐻 

𝑛
≥ 1 

To get our desired bound. 

This implies that it satisfies to have: 

𝑠 ≥ 𝜖−2 ⋅
𝑛

 𝐻 
=

 𝐻 = 𝜖𝑛
 

1

𝜖
 
𝑂 1 

⋅  𝑛 

 

To be continued next class… 


