Seminar on Sublinear time algorithms Lecture 1

Many of the sublinear algorithms are approximate and/or randomized. We will see some examples today.

Diameter of a Metric [Approximate]

Input: n points and all pairwise distances satisfying triangle inequality.
Goal: Compute the diameter of the set, which is the largest pair-wise distance.

Theorem (by Indyk): There is a deterministic algorithm that approximates the diameter within factor 2 in time $O(n)$.
The only requirement is that it's a metric (so we have the triangle inequality) and the distances is symmetric.

Algorithm

Choose 1 point arbitrarily and check the distance between it and all other points. Then take the max.

Analysis

Runtime: $O(n)$ - Obvious.

Correctness:

Denote $D_{i j}$ as the distance between point i and point j.
Suppose $O P T=D_{a b}$ and suppose the arbitrary point we chose is i.
By the triangle inequality: $O P T=D_{a b} \leq D_{a i}+D_{b i}$
At least one of $D_{a i}$ or $D_{i b}$ is $\geq \frac{1}{2}$ OPT.
So $A L G \geq \frac{1}{2} O P T$, which means we have a 2 approximation.

Finding element in sorted list [Randomized]

Input: Given a list that is sorted but in a linked list structure. However, it also has direct access. (for instance - an array of elements, where each element points at the index of the next element)
Goal: Find whether q appears in the list.

Theorem (by Chazelle,-Liu-Magen): There is a randomized algorithm that runs in time $O(\sqrt{n})$ and is correct with high probability. The error is one sided - so if q is found it is certainly there. If not, then it is not there with high probability.

Note: With high probability we mean that it's bigger than $\frac{2}{3}$. One can later amplify it if needed.

Algorithm

Define $t=2 \sqrt{n}$

1. Scan the first t elements of the list. If q was found report it was found.
2. Choose at random $k=\sqrt{n}$ elements from the list
3. Find which of them is $\leq q$ and take the largest
4. Scan the linked list starting from this element for the next t elements and report whether q was found or not.

Analysis

Runtime: Obviously $O(k+t)=O(\sqrt{n})$
Correctness: wlog, q in the list. Since if not we will certainly not find it and return the right answer. Let the linked list be: $a_{1}<a_{2}<\cdots<a_{n}$ and suppose that $q=a_{j}$
$\operatorname{Pr}\left[\right.$ none of the k samples $\left.\in\left\{a_{j-t+1}, \ldots, \underset{q}{a_{j}}\right\}\right] \leq\left(1-\frac{t}{n}\right)^{k} \leq e^{-\frac{t k}{n}} \leq \frac{1}{7}$.
It follows that with probability over $\frac{6}{7}$ the algorithm will sample at least one of $q_{j-t+1}, \ldots, a_{j}=q$ in which case the scan will find q.

We can even refine the argument. For instance, we can have a witness for not having q in the list if when scanning we go from a value smaller than q to a value that is larger. In addition, we can say we scan the list until we find q (or find it's not there) and thus the algorithm will always return the right answer but the runtime is randomized (with a small expectation).

Approximate average degree in a graph

Input: A connected graph given as an adjacency list.
Goal: Compute the average degree in the graph.

Theorem [A weaker version of a theorem by Feige]: There is a randomized algorithm that approximates the average degree within a factor of $2+\epsilon$ (for any desired $\frac{1}{2}>\epsilon>0$) in time $O\left(\left(\frac{1}{\epsilon}\right)^{O(1)} \cdot \sqrt{n}\right)$

Algorithm

1. Choose a set S by picking at random $S=\left(\frac{1}{\epsilon}\right)^{O(1)} \cdot \sqrt{n}$ vertices.
2. Compute the average degree $-d_{s}$
3. Repeat the above $\frac{8}{\epsilon}$ times and report the smallest value in step 2 .

Analysis

Runtime: $O\left(\left(\frac{1}{\epsilon}\right)^{O(1)} \cdot \sqrt{n}\right)$ - obvious.

Correctness: Let d_{s} be the average degree of S, and let d be the average degree in G

Lemma 1: In one iteration:
$\operatorname{Pr}\left[d_{s}<\frac{1}{2}(1-\epsilon) d\right] \leq \frac{\epsilon}{64}$
Lemma 2: In one iteration:
$\operatorname{Pr}\left[d_{s}>(1+\epsilon) d\right] \leq 1-\frac{\epsilon}{2}$

Given these two lemmas this is how you prove the theorem:
$\operatorname{Pr}[A L G>(1+\epsilon) d] \leq\left(1-\frac{\epsilon}{2}\right)^{\frac{8}{\epsilon}}<e^{-4}<\frac{1}{8}$
$\operatorname{Pr}[\underbrace{A L G<\frac{1}{2}(1-\epsilon) d}_{=\text {union of } \frac{8}{\epsilon} \text { events }}] \leq \frac{8}{\epsilon} \cdot \frac{\epsilon}{64}=\frac{1}{8} \Rightarrow$
Algorithm achieves approximation $2+\epsilon$ with probability $\geq \frac{3}{4}$.

Proof of lemma 2:

Denote $s=|S|$
Let X_{i} for $i=1, \ldots, s$ be the degree of the i 'th vertex chosen to $S \Rightarrow d_{s}=\frac{1}{s} \sum_{i=1}^{S} X_{i}$ and so:
$E\left[d_{s}\right]=\frac{1}{s} \sum_{i=1}^{s} E\left[X_{i}\right]=d$

Markov's inequality:

If $Z \geq 0$ is a random variable, then for all $\alpha>1$:
$\operatorname{Pr}[Z \geq \alpha E[Z]] \leq \frac{1}{\alpha}$

So by using Markov's inequality we get:
$\operatorname{Pr}\left[d_{s} \geq(1+\epsilon) d\right] \leq \frac{1}{1+\epsilon}<1-\frac{\epsilon}{2}$

Proof of lemma 1:

Let H be the set of $\sqrt{\epsilon n}$ vertices with the highest degree.

Let $L=V \backslash H$.
Wlog, we assume S is chosen from L (the true d_{S} dominates this analysis)
So now, let X_{i} for $i=1, \ldots, s$ be the degree of i 'th vertex chosen.
$d_{s}=\frac{1}{s} \sum_{i=1}^{s} X_{i}$

Chernoff bound:

Let $Z_{i} \in\{0,1\}$ for $i=1, \ldots, s$ be independent random variables. Then for all $0<\delta<1$:
$\operatorname{Pr}\left[\sum_{i=1}^{s} Z_{i} \leq(1-\delta) \cdot E\left[\sum_{i} Z_{i}\right]\right] \leq e^{-\delta^{2} \cdot \frac{E\left[\sum_{i} Z_{i}\right]}{4}}$

Denote d_{H} to be the smallest degree in H.
Then $1 \leq X_{i} \leq d_{H}$

So now we would like to find the size of S such that we'll reach our bound. Thus, we'll split into cases based on d_{H}

Case $1-d_{H} \geq \frac{1}{\epsilon}|H|$:
Note the following facts:
${ }^{*}$) Each vertex in $|H|$ has a degree that is higher than d_{H} so the sum of all the degrees of vertices in $|H|$ is larger than $|H| \cdot d_{H}$
$\left(^{* *}\right)$ The maximal number of edges of H that have both their ends in H is the number of possible pairs of vertices of $H-\binom{|H|}{2}$, and so the contribution of those edges to the degrees of the vertices of H is at most $2 \cdot\binom{|H|}{2}=|H|(|H|-1) \leq|H|^{2}$
$E\left[X_{1}\right] \stackrel{(*)+(* *)}{\geq} \frac{d_{H}|H|-|H|^{2}}{|L|}=\frac{\left(d_{H}-|H|\right) \cdot|H|}{|L|}=\frac{\left(1-\frac{|H|}{d_{H}}\right) \cdot d_{H} \cdot|H|}{|L|}{\underset{c}{d_{H}} \geq_{\epsilon}^{n}|H|}_{\geq}^{\frac{1}{n>|L|}} \frac{(1-\epsilon) \cdot d_{H} \cdot|H|}{n}$
So in this case:
$e^{-\epsilon^{2} \cdot \frac{E\left[\sum X_{i}\right]}{4 \cdot d_{H}}} \leq e^{-\epsilon^{2} \cdot \frac{\frac{(1-\epsilon) \cdot d_{\#} \cdot|H|}{n}}{4 \cdot d_{\#}}}$
Enough to have (up to constants and $\log \left(\frac{1}{\epsilon}\right)$ factors):
$\frac{s \cdot \epsilon^{2} \cdot|H|}{n} \geq 1$
To get our desired bound.
This implies that it satisfies to have:
$s \geq \epsilon^{-2} \cdot \frac{n}{|H|} \stackrel{|H|=\sqrt{\epsilon n}}{=}\left(\frac{1}{\epsilon}\right)^{O(1)} \cdot \sqrt{n}$

To be continued next class...

