Seminar on Sublinear time algorithms
Lecture 1

17.3.2010 lecturer: Robert Krauthgamer Scriber: Aviv Reznik

Many of the sublinear algorithms are approximate and/or randomized. We will see some examples
today.

Diameter of a Metric [Approximate]
Input: n points and all pairwise distances satisfying triangle inequality.
Goal: Compute the diameter of the set, which is the largest pair-wise distance.

Theorem (by Indyk): There is a deterministic algorithm that approximates the diameter within factor 2
intime O(n).

The only requirement is that it’s a metric (so we have the triangle inequality) and the distances is
symmetric.

Algorithm

Choose 1 point arbitrarily and check the distance between it and all other points. Then take the max.
Analysis

Runtime: O(n) - Obvious.

Correctness:

Denote D;; as the distance between point i and point j.

Suppose OPT = D, and suppose the arbitrary point we chose is i.

By the triangle inequality: OPT = D, < Dg; + Dy;

At least one of D,; or Dy, is > %OPT.

So ALG = %OPT, which means we have a 2 approximation.

Finding element in sorted list [Randomized]

Input: Given a list that is sorted but in a linked list structure. However, it also has direct access.
(for instance - an array of elements, where each element points at the index of the next element)
Goal: Find whether g appears in the list.

Theorem (by Chazelle,-Liu-Magen): There is a randomized algorithm that runs in time 0(\/5) and is
correct with high probability. The error is one sided — so if g is found it is certainly there. If not, then it is
not there with high probability.



Note: With high probability we mean that it’s bigger than % One can later amplify it if needed.

Algorithm

Define t = 2v/n

1. Scan the first t elements of the list. If g was found report it was found.

2. Choose at random k = +/n elements from the list

3. Find which of them is < q and take the largest

4. Scan the linked list starting from this element for the next t elements and report whether g was
found or not.

Analysis
Runtime: Obviously O(k + t) = 0(\/5)
Correctness: wlog, g in the list. Since if not we will certainly not find it and return the right answer. Let
the linked list be: a; < a; <+ < a, and suppose that g = g
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It follows that with probability over g the algorithm will sample at least one of q; _; 41, ...,a; = g in

which case the scan will find g.

We can even refine the argument. For instance, we can have a witness for not having g in the list if
when scanning we go from a value smaller than g to a value that is larger. In addition, we can say we
scan the list until we find g (or find it’s not there) and thus the algorithm will always return the right
answer but the runtime is randomized (with a small expectation).

Approximate average degree in a graph
Input: A connected graph given as an adjacency list.
Goal: Compute the average degree in the graph.

Theorem [ A weaker version of a theorem by Feige]: There is a randomized algorithm that approximates
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the average degree within a factor of 2 + ¢ (for any desired S >€> 0)intime O ((Z) : ﬁ)

Algorithm
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1. Choose a set S by picking at random S = (E -/n vertices.

2. Compute the average degree — d;
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3. Repeat the above - times and report the smallest value in step 2.

Analysis

0(1)
Runtime: O ((é) . \/ﬁ) — obvious.

Correctness: Let d, be the average degree of S, and let d be the average degree in G

Lemma 1: In one iteration:
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Lemma 2: In one iteration:
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Given these two lemmas this is how you prove the theorem:
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Algorithm achieves approximation 2 + € with probability >

Proof of lemma 2:

Denote s = |S|

Let X; fori =1, ..., s be the degree of the i"th vertex chosento § = d; = %Zle X; and so:
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Markov’s inequality:
If Z = 0is a random variable, then for all « > 1:
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So by using Markov’s inequality we get:
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Proof of lemma 1:
Let H be the set of ven vertices with the highest degree.



Let L = V\H.
WIlog, we assume S is chosen from L (the true d; dominates this analysis)
So now, let X; fori = 1, ..., s be the degree of i’th vertex chosen.
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Chernoff bound:
Let Z; € {0,1} fori = 1, ..., s be independent random variables. Then forall 0 < § < 1:
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Denote dy to be the smallest degree in H.
Thenl <X; <dy
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So now we would like to find the size of S such that we’ll reach our bound. Thus, we’ll split into cases
based on dy

Casel - dy ZEIHI:

Note the following facts:

(*) Each vertex in |[H| has a degree that is higher than dy so the sum of all the degrees of vertices in |H|
is larger than |H| - dy

(**) The maximal number of edges of H that have both their ends in H is the number of possible pairs of
|H|
2
most 2 (1) = |u1qm1 - 1) < 112

vertices of H - ( ), and so the contribution of those edges to the degrees of the vertices of H is at
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So in this case:
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To get our desired bound.
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To be continued next class...



