Seminar on Sublinear time algorithms
Lecture 1

17.3.2010 lecturer: Robert Krauthgamer Scriber: Aviv Reznik

Many of the sublinear algorithms are approximate and/or randomized. We will see some examples
today.

Diameter of a Metric [Approximate]
Input: n points and all pairwise distances satisfying triangle inequality.
Goal: Compute the diameter of the set, which is the largest pair-wise distance.

Theorem (by Indyk): There is a deterministic algorithm that approximates the diameter within factor 2
intime O(n).

The only requirement is that it’s a metric (so we have the triangle inequality) and the distances is
symmetric.

Algorithm

Choose 1 point arbitrarily and check the distance between it and all other points. Then take the max.
Analysis

Runtime: O(n) - Obvious.

Correctness:

Denote D;; as the distance between point i and point j.

Suppose OPT = D, and suppose the arbitrary point we chose is i.

By the triangle inequality: OPT = D, < Dg; + Dy;

At least one of D,; or Dy, is > %OPT.

So ALG = %OPT, which means we have a 2 approximation.

Finding element in sorted list [Randomized]

Input: Given a list that is sorted but in a linked list structure. However, it also has direct access.
(for instance - an array of elements, where each element points at the index of the next element)
Goal: Find whether g appears in the list.

Theorem (by Chazelle,-Liu-Magen): There is a randomized algorithm that runs in time 0(\/5) and is
correct with high probability. The error is one sided — so if g is found it is certainly there. If not, then it is
not there with high probability.

Note: With high probability we mean that it’s bigger than % One can later amplify it if needed.

Algorithm

Define t = 2v/n

1. Scan the first t elements of the list. If g was found report it was found.

2. Choose at random k = +/n elements from the list

3. Find which of them is < q and take the largest

4. Scan the linked list starting from this element for the next t elements and report whether g was
found or not.

Analysis
Runtime: Obviously O(k + t) = 0(\/5)
Correctness: wlog, g in the list. Since if not we will certainly not find it and return the right answer. Let
the linked list be: a; < a; <+ < a, and suppose that g = g

£\k kg
Pr|none of the k samples € {a; _¢11, cg < (1 — Z) <en<-

q

It follows that with probability over g the algorithm will sample at least one of q; _; 41, ...,a; = g in

which case the scan will find g.

We can even refine the argument. For instance, we can have a witness for not having g in the list if
when scanning we go from a value smaller than g to a value that is larger. In addition, we can say we
scan the list until we find g (or find it’s not there) and thus the algorithm will always return the right
answer but the runtime is randomized (with a small expectation).

Approximate average degree in a graph
Input: A connected graph given as an adjacency list.
Goal: Compute the average degree in the graph.

Theorem [A weaker version of a theorem by Feige]: There is a randomized algorithm that approximates

1 1\0D)
the average degree within a factor of 2 + ¢ (for any desired S >€> 0)intime O ((Z) : ﬁ)

Algorithm

1)0(1)

1. Choose a set S by picking at random S = (E -/n vertices.

2. Compute the average degree — d;

8 .. .
3. Repeat the above - times and report the smallest value in step 2.

Analysis

0(1)
Runtime: O ((é) . \/ﬁ) — obvious.

Correctness: Let d, be the average degree of S, and let d be the average degree in G

Lemma 1: In one iteration:

prla. <2(1-e)d] < £
M% S22V 799 =6
Lemma 2: In one iteration:

€
Prld, >(1+¢€)d] <1 ~3

Given these two lemmas this is how you prove the theorem:

8
€E\e ” 1
Pr[ALG>(1+6)d]S(1—E) <e™t<c
1 8 € 1

. 8
=union of — events

1w

Algorithm achieves approximation 2 + € with probability >

Proof of lemma 2:

Denote s = |S|

Let X; fori =1, ..., s be the degree of the i"th vertex chosento § = d; = %Zle X; and so:

Eld,] = %Z E[X,]=d
i=1

Markov’s inequality:
If Z = 0is a random variable, then for all « > 1:
1

Pr[Z = aE[Z]] <=
a

So by using Markov’s inequality we get:
1 €
Pr|d, = (1 dlfs—<1—-=
rldy > (1+€)d] < T — <15
Proof of lemma 1:
Let H be the set of ven vertices with the highest degree.

Let L = V\H.
WIlog, we assume S is chosen from L (the true d; dominates this analysis)
So now, let X; fori = 1, ..., s be the degree of i’th vertex chosen.

s

_1ZX

_S ;
i=1

Chernoff bound:
Let Z; € {0,1} fori = 1, ..., s be independent random variables. Then forall 0 < § < 1:

\ _s2E%2)]
Pr ZZiS(l—S)-E <e 4
i=1

i

Denote dy to be the smallest degree in H.
Thenl <X; <dy

X
Let Z;=7+€[0,1]
X 7 d
[d <(1-¢e)E[d [L% =
dy
Chernof f

bound _ 2 EXz] _2 EXXi]
Pr ZZLS(l—e)E[Z; 4 =e Ady

EY x|=1s1- Ex

average
degree in L

So now we would like to find the size of S such that we’ll reach our bound. Thus, we’ll split into cases
based on dy

Casel - dy ZEIHI:

Note the following facts:

(*) Each vertex in |[H| has a degree that is higher than dy so the sum of all the degrees of vertices in |H|
is larger than |H| - dy

(**) The maximal number of edges of H that have both their ends in H is the number of possible pairs of
|H|
2
most 2 (1) = |u1qm1 - 1) < 112

vertices of H - (), and so the contribution of those edges to the degrees of the vertices of H is at

n>|L|
|H|)
(346 azH|H|—|H|2_(dH—|H|)-|H|_(1 dy) Y 'H'd”j'”' (1-€)-dy-|H]|

tos |L| N IL] - |L| n
So in this case:

=) | H]

2, n
4-dyr

_EZ_E[ZXi] _
e *du <e

€
1
Enough to have (up to constants and log (E) factors):
s-€2-|H|
n
To get our desired bound.

>1

This implies that it satisfies to have:
0(1)

n |Hl=ven (1
> e LI (T G
|H|

€

To be continued next class...

