
Seminar on Sublinear time algorithms
Lecture 1

17.3.2010 lecturer: Robert Krauthgamer Scriber: Aviv Reznik

Many of the sublinear algorithms are approximate and/or randomized. We will see some examples

today.

Diameter of a Metric [Approximate]
Input: 𝑛 points and all pairwise distances satisfying triangle inequality.

Goal: Compute the diameter of the set, which is the largest pair-wise distance.

Theorem (by Indyk): There is a deterministic algorithm that approximates the diameter within factor 2

in time 𝑂 𝑛 .

The only requirement is that it’s a metric (so we have the triangle inequality) and the distances is

symmetric.

Algorithm
Choose 1 point arbitrarily and check the distance between it and all other points. Then take the max.

Analysis

Runtime: 𝑂 𝑛 - Obvious.

Correctness:

Denote 𝐷𝑖𝑗 as the distance between point 𝑖 and point 𝑗.

Suppose 𝑂𝑃𝑇 = 𝐷𝑎𝑏 and suppose the arbitrary point we chose is 𝑖.

By the triangle inequality: 𝑂𝑃𝑇 = 𝐷𝑎𝑏 ≤ 𝐷𝑎𝑖 + 𝐷𝑏𝑖

At least one of 𝐷𝑎𝑖 or 𝐷𝑖𝑏 is ≥
1

2
𝑂𝑃𝑇.

So 𝐴𝐿𝐺 ≥
1

2
𝑂𝑃𝑇, which means we have a 2 approximation.

Finding element in sorted list [Randomized]
Input: Given a list that is sorted but in a linked list structure. However, it also has direct access.

(for instance - an array of elements, where each element points at the index of the next element)

Goal: Find whether 𝑞 appears in the list.

Theorem (by Chazelle,-Liu-Magen): There is a randomized algorithm that runs in time 𝑂 𝑛 and is

correct with high probability. The error is one sided – so if 𝑞 is found it is certainly there. If not, then it is

not there with high probability.

Note: With high probability we mean that it’s bigger than
2

3
. One can later amplify it if needed.

Algorithm

Define 𝑡 = 2 𝑛

1. Scan the first 𝑡 elements of the list. If 𝑞 was found report it was found.

2. Choose at random 𝑘 = 𝑛 elements from the list

3. Find which of them is ≤ 𝑞 and take the largest

4. Scan the linked list starting from this element for the next 𝑡 elements and report whether 𝑞 was

found or not.

Analysis

Runtime: Obviously 𝑂 𝑘 + 𝑡 = 𝑂 𝑛

Correctness: wlog, 𝑞 in the list. Since if not we will certainly not find it and return the right answer. Let

the linked list be: 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 and suppose that 𝑞 = 𝑎𝑗

Pr 𝑛𝑜𝑛𝑒 𝑜𝑓 𝑡𝑕𝑒 𝑘 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ∈ 𝑎𝑗−𝑡+1 , … , 𝑎𝑗
𝑞

 ≤ 1 −
𝑡

𝑛

𝑘
≤ 𝑒−

𝑡𝑘

𝑛 ≤
1

7
.

It follows that with probability over
6

7
 the algorithm will sample at least one of 𝑞𝑗−𝑡+1 , … , 𝑎𝑗 = 𝑞 in

which case the scan will find 𝑞.

We can even refine the argument. For instance, we can have a witness for not having 𝑞 in the list if

when scanning we go from a value smaller than 𝑞 to a value that is larger. In addition, we can say we

scan the list until we find 𝑞 (or find it’s not there) and thus the algorithm will always return the right

answer but the runtime is randomized (with a small expectation).

Approximate average degree in a graph
Input: A connected graph given as an adjacency list.

Goal: Compute the average degree in the graph.

Theorem [A weaker version of a theorem by Feige]: There is a randomized algorithm that approximates

the average degree within a factor of 2 + 𝜖 (for any desired
1

2
> 𝜖 > 0) in time 𝑂

1

𝜖

𝑂 1

⋅ 𝑛

Algorithm

1. Choose a set 𝑆 by picking at random 𝑆 =
1

𝜖

𝑂 1

⋅ 𝑛 vertices.

2. Compute the average degree – 𝑑𝑠

3. Repeat the above
8

𝜖
 times and report the smallest value in step 2.

Analysis

Runtime: 𝑂
1

𝜖

𝑂 1

⋅ 𝑛 – obvious.

Correctness: Let 𝑑𝑠 be the average degree of 𝑆, and let 𝑑 be the average degree in 𝐺

Lemma 1: In one iteration:

Pr 𝑑𝑠 <
1

2
 1 − 𝜖 𝑑 ≤

𝜖

64

Lemma 2: In one iteration:

Pr 𝑑𝑠 > 1 + 𝜖 𝑑 ≤ 1 −
𝜖

2

Given these two lemmas this is how you prove the theorem:

Pr 𝐴𝐿𝐺 > 1 + 𝜖 𝑑 ≤ 1 −
𝜖

2

8
𝜖

< 𝑒−4 <
1

8

Pr

𝐴𝐿𝐺 <
1

2
 1 − 𝜖 𝑑

=𝑢𝑛𝑖𝑜𝑛 𝑜𝑓
8

𝜖
 𝑒𝑣𝑒𝑛𝑡𝑠

≤
8

𝜖
⋅
𝜖

64
=

1

8
⇒

Algorithm achieves approximation 2 + 𝜖 with probability ≥
3

4
.

Proof of lemma 2:

Denote 𝑠 = 𝑆

Let 𝑋𝑖 for 𝑖 = 1,… , 𝑠 be the degree of the 𝑖’th vertex chosen to 𝑆 ⇒ 𝑑𝑠 =
1

𝑠
 𝑋𝑖
𝑠
𝑖=1 and so:

𝐸 𝑑𝑠 =
1

𝑠
 𝐸 𝑋𝑖

𝑠

𝑖=1

= 𝑑

Markov’s inequality:

If 𝑍 ≥ 0 is a random variable, then for all 𝛼 > 1:

Pr 𝑍 ≥ 𝛼𝐸 𝑍 ≤
1

𝛼

So by using Markov’s inequality we get:

Pr 𝑑𝑠 ≥ 1 + 𝜖 𝑑 ≤
1

1 + 𝜖
< 1 −

𝜖

2

Proof of lemma 1:

Let 𝐻 be the set of 𝜖𝑛 vertices with the highest degree.

Let 𝐿 = 𝑉\𝐻.

Wlog, we assume 𝑆 is chosen from 𝐿 (the true 𝑑𝑠 dominates this analysis)

So now, let 𝑋𝑖 for 𝑖 = 1,… , 𝑠 be the degree of 𝑖’th vertex chosen.

𝑑𝑠 =
1

𝑠
 𝑋𝑖

𝑠

𝑖=1

Chernoff bound:

Let 𝑍𝑖 ∈ 0,1 for 𝑖 = 1,… , 𝑠 be independent random variables. Then for all 0 < 𝛿 < 1:

Pr 𝑍𝑖 ≤ 1 − 𝛿 ⋅ 𝐸 𝑍𝑖
𝑖

𝑠

𝑖=1

 ≤ 𝑒−𝛿
2⋅
𝐸 𝑍𝑖𝑖

4

Denote 𝑑𝐻 to be the smallest degree in 𝐻.

Then 1 ≤ 𝑋𝑖 ≤ 𝑑𝐻

Pr 𝑑𝑠 ≤ 1 − 𝜖 𝐸 𝑑𝑠 = Pr
 𝑋𝑖
𝑑𝐻

≤ 1 − 𝜖 𝐸
 𝑥𝑖
𝑑𝐻

 =
𝐿𝑒𝑡 𝑍𝑖=

𝑋𝑖
𝑑𝐻

∈ 0,1

Pr 𝑍𝑖 ≤ 1 − 𝜖 𝐸 𝑍𝑖 ≤

𝐶𝑕𝑒𝑟𝑛𝑜𝑓𝑓
𝑏𝑜𝑢𝑛𝑑

𝑒−𝜖
2 ⋅
𝐸 𝑍𝑖

4 = 𝑒
−𝜖2 ⋅

𝐸 𝑋𝑖
4⋅𝑑𝐻

𝐸 𝑋𝑖 = 𝑆 ⋅ 𝐸 𝑋1
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑑𝑒𝑔𝑟𝑒𝑒 𝑖𝑛 𝐿

So now we would like to find the size of 𝑆 such that we’ll reach our bound. Thus, we’ll split into cases

based on 𝑑𝐻

Case 1 - 𝑑𝐻 ≥
1

𝜖
 𝐻 :

Note the following facts:

(*) Each vertex in 𝐻 has a degree that is higher than 𝑑𝐻 so the sum of all the degrees of vertices in 𝐻

is larger than 𝐻 ⋅ 𝑑𝐻

(**) The maximal number of edges of 𝐻 that have both their ends in 𝐻 is the number of possible pairs of

vertices of 𝐻 -
 𝐻
2
 , and so the contribution of those edges to the degrees of the vertices of 𝐻 is at

most 2 ⋅
 𝐻
2
 = 𝐻 𝐻 − 1 ≤ 𝐻 2

𝐸 𝑋1 ≥
 ∗ + ∗∗ 𝑑𝐻 𝐻 − 𝐻 2

 𝐿
=
 𝑑𝐻 − 𝐻 ⋅ 𝐻

 𝐿
=
 1 −

 𝐻
𝑑𝐻

 ⋅ 𝑑𝐻 ⋅ 𝐻

 𝐿
≥

𝑛> 𝐿

𝑑𝐻≥
1
𝜖
 𝐻 1 − 𝜖 ⋅ 𝑑𝐻 ⋅ 𝐻

𝑛

So in this case:

𝑒
−𝜖2 ⋅

𝐸 𝑋𝑖
4⋅𝑑𝐻 ≤ 𝑒

−𝜖2 ⋅
𝑠
 1−𝜖 ⋅𝑑𝐻 ⋅ 𝐻

𝑛
4⋅𝑑𝐻

Enough to have (up to constants and log
1

𝜖
 factors):

𝑠 ⋅ 𝜖2 ⋅ 𝐻

𝑛
≥ 1

To get our desired bound.

This implies that it satisfies to have:

𝑠 ≥ 𝜖−2 ⋅
𝑛

 𝐻
=

 𝐻 = 𝜖𝑛

1

𝜖

𝑂 1

⋅ 𝑛

To be continued next class…

