Seminar on Sublinear time algorithms Lecture 1

17.3.2010 lecturer: Robert Krauthgamer Scriber: Aviv Reznik

Many of the sublinear algorithms are approximate and/or randomized. We will see some examples today.

Diameter of a Metric [Approximate]

Input: n points and all pairwise distances satisfying triangle inequality. Goal: Compute the diameter of the set, which is the largest pair-wise distance.

Theorem (by Indyk): There is a deterministic algorithm that approximates the diameter within factor 2 in time O(n).

The only requirement is that it's a metric (so we have the triangle inequality) and the distances is symmetric.

Algorithm

Choose 1 point arbitrarily and check the distance between it and all other points. Then take the max.

Analysis

Runtime: O(n) - Obvious.

Correctness:

Denote D_{ij} as the distance between point i and point j. Suppose $OPT = D_{ab}$ and suppose the arbitrary point we chose is i. By the triangle inequality: $OPT = D_{ab} \le D_{ai} + D_{bi}$ At least one of D_{ai} or D_{ib} is $\ge \frac{1}{2}OPT$.

So $ALG \ge \frac{1}{2}OPT$, which means we have a 2 approximation.

Finding element in sorted list [Randomized]

Input: Given a list that is sorted but in a linked list structure. However, it also has direct access. (for instance - an array of elements, where each element points at the index of the next element) **Goal**: Find whether *q* appears in the list.

Theorem (by Chazelle,-Liu-Magen): There is a randomized algorithm that runs in time $O(\sqrt{n})$ and is correct with high probability. The error is one sided – so if q is found it is certainly there. If not, then it is not there with high probability.

Note: With high probability we mean that it's bigger than $\frac{2}{3}$. One can later amplify it if needed.

Algorithm

Define $t = 2\sqrt{n}$

1. Scan the first *t* elements of the list. If *q* was found report it was found.

- 2. Choose at random $k = \sqrt{n}$ elements from the list
- 3. Find which of them is $\leq q$ and take the largest

4. Scan the linked list starting from this element for the next *t* elements and report whether *q* was found or not.

Analysis

Runtime: Obviously $O(k + t) = O(\sqrt{n})$

Correctness: wlog, q in the list. Since if not we will certainly not find it and return the right answer. Let the linked list be: $a_1 < a_2 < \cdots < a_n$ and suppose that $q = a_j$

$$\Pr\left[\text{none of the } k \text{ samples} \in \left\{a_{j-t+1}, \dots, \underbrace{a_j}_{q}\right\}\right] \leq \left(1 - \frac{t}{n}\right)^k \leq e^{-\frac{tk}{n}} \leq \frac{1}{7}.$$

It follows that with probability over $\frac{6}{7}$ the algorithm will sample at least one of $q_{j-t+1}, ..., a_j = q$ in which case the scan will find q.

We can even refine the argument. For instance, we can have a witness for not having q in the list if when scanning we go from a value smaller than q to a value that is larger. In addition, we can say we scan the list until we find q (or find it's not there) and thus the algorithm will always return the right answer but the runtime is randomized (with a small expectation).

Approximate average degree in a graph

Input: A connected graph given as an adjacency list. **Goal**: Compute the average degree in the graph.

Theorem [A weaker version of a theorem by Feige]: There is a randomized algorithm that approximates

the average degree within a factor of $2 + \epsilon$ (for any desired $\frac{1}{2} > \epsilon > 0$) in time $O\left(\left(\frac{1}{\epsilon}\right)^{O(1)} \cdot \sqrt{n}\right)$

Algorithm

- 1. Choose a set S by picking at random $S = \left(\frac{1}{\epsilon}\right)^{O(1)} \cdot \sqrt{n}$ vertices.
- 2. Compute the average degree d_s

3. Repeat the above $\frac{8}{\epsilon}$ times and report the smallest value in step 2.

Analysis

Runtime: $O\left(\left(\frac{1}{\epsilon}\right)^{O(1)} \cdot \sqrt{n}\right)$ – obvious.

Correctness: Let d_s be the average degree of S, and let d be the average degree in G

Lemma 1: In one iteration:

$$\Pr\left[d_s < \frac{1}{2}(1-\epsilon)d\right] \le \frac{\epsilon}{64}$$

Lemma 2: In one iteration:
 $\Pr[d_s > (1+\epsilon)d] \le 1 - \frac{\epsilon}{2}$

Given these two lemmas this is how you prove the theorem:

$$\Pr[ALG > (1+\epsilon)d] \le \left(1-\frac{\epsilon}{2}\right)^{\frac{8}{\epsilon}} < e^{-4} < \frac{1}{8}$$
$$\Pr\left[\underbrace{ALG < \frac{1}{2}(1-\epsilon)d}_{=union \ of \ \frac{8}{\epsilon} \ events}\right] \le \frac{8}{\epsilon} \cdot \frac{\epsilon}{64} = \frac{1}{8} \Rightarrow$$

Algorithm achieves approximation $2 + \epsilon$ with probability $\geq \frac{3}{4}$.

Proof of lemma 2:

Denote s = |S|Let X_i for i = 1, ..., s be the degree of the *i*'th vertex chosen to $S \Rightarrow d_s = \frac{1}{s} \sum_{i=1}^{s} X_i$ and so:

$$E[d_s] = \frac{1}{s} \sum_{i=1}^{s} E[X_i] = d$$

Markov's inequality:

If $Z \ge 0$ is a random variable, then for all $\alpha > 1$:

$$\Pr[Z \ge \alpha E[Z]] \le \frac{1}{\alpha}$$

So by using Markov's inequality we get:

$$\Pr[d_s \ge (1+\epsilon)d] \le \frac{1}{1+\epsilon} < 1 - \frac{\epsilon}{2}$$

Proof of lemma 1:

Let *H* be the set of $\sqrt{\epsilon n}$ vertices with the highest degree.

Let $L = V \setminus H$.

Wlog, we assume S is chosen from L (the true d_s dominates this analysis) So now, let X_i for i = 1, ..., s be the degree of i'th vertex chosen.

$$d_s = \frac{1}{s} \sum_{i=1}^{s} X_i$$

Chernoff bound:

Let $Z_i \in \{0,1\}$ for i = 1, ..., s be independent random variables. Then for all $0 < \delta < 1$: $\Pr\left|\sum_{i=1}^{s} Z_{i} \leq (1-\delta) \cdot E\left[\sum_{i} Z_{i}\right]\right| \leq e^{-\delta^{2} \cdot \frac{E[\sum_{i} Z_{i}]}{4}}$

Denote d_H to be the smallest degree in H. Then $1 \leq X_i \leq d_H$

$$\Pr\left[d_{s} \leq (1-\epsilon)E\left[d_{s}\right]\right] = \Pr\left[\frac{\sum X_{i}}{d_{H}} \leq (1-\epsilon)E\left[\frac{\sum x_{i}}{d_{H}}\right]\right] \stackrel{Let \ Z_{i} = \frac{X_{i}}{d_{H}} \in [0,1]}{=}$$
$$\Pr\left[\sum Z_{i} \leq (1-\epsilon)E\left[\sum Z_{i}\right]\right] \stackrel{Chernoff}{\leq} e^{-\epsilon^{2} \cdot \frac{E\left[\sum Z_{i}\right]}{4}} = e^{-\epsilon^{2} \cdot \frac{E\left[\sum X_{i}\right]}{4 \cdot d_{H}}}$$
$$E\left[\sum X_{i}\right] = |S| \cdot \underbrace{E[X_{1}]}_{average}$$
$$degree \ in \ L$$

So now we would like to find the size of S such that we'll reach our bound. Thus, we'll split into cases based on d_H

Case 1 - $d_H \ge \frac{1}{\epsilon} |H|$:

Note the following facts:

(*) Each vertex in |H| has a degree that is higher than d_H so the sum of all the degrees of vertices in |H|is larger than $|H| \cdot d_H$

(**) The maximal number of edges of H that have both their ends in H is the number of possible pairs of vertices of $H - \binom{|H|}{2}$, and so the contribution of those edges to the degrees of the vertices of H is at most $2 \cdot \binom{|H|}{2} = |H|(|H| - 1) \le |H|^2$

$$E[X_1] \stackrel{(*)+(**)}{\geq} \frac{d_H |H| - |H|^2}{|L|} = \frac{(d_H - |H|) \cdot |H|}{|L|} = \frac{\left(1 - \frac{|H|}{d_H}\right) \cdot d_H \cdot |H|}{|L|} \stackrel{n > |L|}{\geq} \frac{(1 - \epsilon) \cdot d_H \cdot |H|}{n}$$

So in this case:

So in this case:

$$e^{-\epsilon^2 \frac{E[\Sigma X_i]}{4 \cdot d_H}} \le e^{-\epsilon^2 \frac{s \frac{(1-\epsilon) \cdot d_H}{H} |H|}{4 \cdot d_H}}$$

Enough to have (up to constants and $\log\left(\frac{1}{\epsilon}\right)$ factors):

$$\frac{s \cdot \epsilon^2 \cdot |H|}{n} \ge 1$$

To get our desired bound. This implies that it satisfies to have:

$$s \ge \epsilon^{-2} \cdot \frac{n}{|H|} \stackrel{|H|=\sqrt{\epsilon n}}{=} \left(\frac{1}{\epsilon}\right)^{O(1)} \cdot \sqrt{n}$$

To be continued next class...