Seminar on Sublinear Time Algorithms		
Lecture 2 March 24, 2010		
Lecturer: Robert Krauthgamer	Scribe by: Igor Shinkar	Updated: April 29, 2010

1 Approximate average degree in a graph - Cont.

Last time we've seen an algorithm for estimating the average degree in a graph.

Theorem 1 (Feige) There is a randomized algorithm that approximates the average degree within a factor of $2 + \epsilon$ for an $\epsilon \in (0, \frac{1}{2})$ in time $\left(\frac{1}{\epsilon}\right)^{O(1)} \cdot \sqrt{n}$.

The algorithm is as following:

- 1. Choose a set S by picking at random $s = \left(\frac{1}{\epsilon}\right)^{O(1)} \cdot \sqrt{n}$ vertices.
- 2. Compute d_S , the average degree of the vertices in S.
- 3. Repeat the above $\frac{8}{\epsilon}$ times and report the smallest value in step 2.

The only thing left to show from last week is the following claim.

Claim 2 Let d_S be the average degree of S, and let d be the average degree in G. Then

$$\Pr[d_S < \frac{1}{2}(1-\epsilon)d] \le \epsilon/64$$

Proof Let $H \subseteq V$ be the $\sqrt{\epsilon n}$ vertices of the highest degree and let $L = V \setminus H$. We assume that S is sampled from L as this distribution is dominated by the actual d_S . Then

$$\mathbb{E}[d_S] \ge \frac{1}{2} \cdot \frac{d|V| - |H|^2}{|L|} \ge \frac{1}{2} \cdot \frac{(d-\epsilon)|V|}{|V|} = \frac{1}{2}(d-\epsilon)$$

where $\frac{1}{2}$ comes from counting the number of edges touching L with at least one endpoint. Let d_H be the lowest degree in H and let $1 \leq X_i \leq d_H$ be the degree of the *i*'th sampled vertex. Then $d_S = \frac{1}{s} \sum X_i$ and by Chernoff (multiplicative) bound we have

$$\Pr[d_S < \frac{1}{2}(1-\epsilon)d] = \Pr[\frac{1}{s}\sum X_i < (1-\epsilon)\mathbb{E}[\frac{1}{s}\sum X_i]] \le \exp(-\frac{\epsilon^2 \cdot s \cdot \mathbb{E}[X_1]}{4d_H})$$

By taking $s \ge \epsilon^{-2} \frac{d_H}{\mathbb{E}[X_1]}$ we would get the required result. But we need s to be independent of d_H and $\mathbb{E}[X_1]$. We analyze two cases below.

Case 1 $d_H \geq \frac{1}{\epsilon} |H|$. Then

$$\mathbb{E}[X_1] = \frac{\sum_{v \in L} d(v)}{|L|} \ge \frac{|H|d_H - |H|^2}{|L|} = \frac{|H|(d_H - |H|)}{|L|} \ge \frac{|H|(1 - \epsilon)d_H}{|V|}$$

Implying $\frac{d_H}{\mathbb{E}[X_1]} \leq \frac{|V|}{|H|}$ and thus

$$\epsilon^{-2} \frac{d_H}{\mathbb{E}[X_1]} \le \epsilon^{-2} \frac{|V|}{|H|} = \operatorname{poly}(\frac{1}{\epsilon})\sqrt{n} = s$$

Case 2 $d_H < \frac{1}{\epsilon}|H|$. Since $\mathbb{E}[X_1] \ge 1$ we may take

$$\epsilon^{-2} \frac{d_H}{\mathbb{E}[X_1]} \le \epsilon^{-3} \sqrt{\epsilon n} = \text{poly}(\frac{1}{\epsilon}) \sqrt{n} = s$$

So by taking s to be the largest of the above two, we complete the proof of the theorem. \blacksquare

Remark In fact there is a matching lower bound under the assumption that the algorithm is allowed to observe only the degrees of a vertex. Any algorithm that uses only degree queries and estimates the average degree within a ratio $2 - \delta$ for some constant δ requires $\Omega(n)$ queries.

2 Minimum spanning trees

Given an undirected connected graph G with maximal degree $\leq D$ and edge weights in $\{1, \ldots, W\}$, represented as an *adjacency list*, we want to compute the weight of MST(G).

Theorem 3 (Chazelle, Rubinfeld, Trevisan) There is an algorithm that approximates the cost of MST(G) within factor of $1 + \epsilon$ in time $O\left(\left(\frac{1}{\epsilon}\right)W^3D\lg(n)\right)$.

We start proving the theorem with the following lemma.

Lemma 4 Let G_i be the subgraph of G containing all edges of weight at most i. Let c_i be the number of connected components in G_i . Then

$$MST(G) = n - W + \sum_{i=1}^{W-1} c_i$$

Next we present an algorithms for approximating MST(G).

- 1. For $i = 1, \ldots, W$ estimate \hat{c}_i for c_i within additive error of $\frac{\epsilon n}{W}$
- 2. Report $n W + \sum_{i=1}^{W-1} \hat{c}_i$

Observe that assuming that step 1 succeeds w.p. $\geq 1 - \frac{1}{4W}$ for all *i*, the algorithm estimates MST(G) within factor of $(1 + \epsilon)$ with probability at least $\frac{3}{4}$.

2.1 Estimating c_j

We may assume that the input is the graph G_j by ignoring the edges of weight $w_e \ge j$. The algorithms for estimating c_j is as following:

- 1. Choose $s = \epsilon^{-2} W^3$ random vertices v_1, \ldots, v_s .
- 2. For each v_i do
 - Choose r.v. $1 \le X_i \le n$ such that $\Pr[X \ge k] = \frac{1}{k}$ for all $k = 1, \dots, n$
 - Perform BFS from v_i until either the entire connected component is explored and set $b_i = 1$, or until explored X + 1 distinct vertices and set $b_i = 0$.
- 3. Report $\hat{c} = \frac{n}{c} \sum_{i=1}^{s} b_i$

The runtime is clearly $s \cdot D \cdot \mathbb{E}[X]$, where D comes from the BFS, and $\mathbb{E}[X] = O(\lg(n))$. We first compute $\mathbb{E}[\hat{c}]$. Let c be the number of connected components. Then

$$\mathbb{E}[\hat{c}] = \frac{n}{s} \sum_{i=1}^{s} \mathbb{E}[b_i] = n \mathbb{E}[b_1]$$

So it is enough to compute $\mathbb{E}[b_1]$:

$$\mathbb{E}[b_1] = \sum_C \frac{|C|}{n} \Pr[X \ge |C|] = \sum \frac{|C|}{n} \cdot \frac{1}{|C|} = \frac{c}{n}$$

where the sum runs over all connected components C. Therefore

$$\mathbb{E}[\hat{c}] = n\mathbb{E}[b_1] = c$$

Next we show that the variance of \hat{c} is not too large, and use Chebyshev inequality to conclude that \hat{c} estimates c well.

$$\operatorname{Var}[b_{1}] = p(1-p) = \frac{c}{n}(1-\frac{c}{n}) \le \frac{c}{n}$$
$$\operatorname{Var}[\hat{c}] = \frac{n^{2}}{s^{2}} \sum_{i=1}^{s} \operatorname{Var}[b_{i}] \le \frac{n^{2}}{s^{2}} \sum_{i=1}^{s} \frac{c}{n} = \frac{nc}{s}$$

By Chebyshev inequality we have

$$\Pr[|\hat{c} - c| \ge \frac{\epsilon n}{W}] \le \frac{Var[\hat{c}]W^2}{n^2\epsilon^2} \le \frac{cW^2}{s\epsilon^2 n} \le \frac{1}{4W}$$

3 Maximum matching

In the problem of maximum matching we are given an undirected connected graph G with maximal degree $\leq D$. The goal is to find a maximum matching, that is a maximum set of disjoint edges.

Lemma 5 The size of any maximal matching is at least half of a maximum matching.

Theorem 6 (Nguyen, Onak) There is an algorithm that $(1/2, \epsilon)$ -approximates maximal matching in time $D^{O(D)}/\epsilon$. That is with high probability the algorithm returns a value in the range $[\frac{1}{2}M - \epsilon n, M]$, where M is the size of maximum matching.

Let us first consider the following greedy algorithm for finding maximal matching.

- 1. Start with an empty set $M = \emptyset$.
- 2. Iterate over the edges in an arbitrary order and add an edge to M if possible
- 3. Output M.

Our sublinear algorithm will simulate this greedy algorithm. We will fix some order of the edges and by sampling edges we will add an edge to M if all its neighbors are not in M. The algorithm is the following:

- 1. For each edge e choose a permutation of edges by assigning each edge a random priority $p(e) \sim U[0, 1]$ uniformly.
- 2. Choose $s = O(D\epsilon^{-2})$ edges e_1, \ldots, e_s uniformly at random from $V \times \{1, \ldots, D\}$.
- 3. For each i = 1, ..., s explore the neighbors of e_i inductively. Set $X_i = 1$ if none of its neighbors is in the matching and $X_i = 0$ otherwise.
- 4. Output $\frac{\sum_i X_i}{s} \cdot Dn$.