
Seminar on Sublinear Time Algorithms

Lecture 2
March 24, 2010

Lecturer: Robert Krauthgamer Scribe by: Igor Shinkar Updated: April 29, 2010

1 Approximate average degree in a graph - Cont.

Last time we’ve seen an algorithm for estimating the average degree in a graph.

Theorem 1 (Feige) There is a randomized algorithm that approximates the average degree
within a factor of 2 + ε for an ε ∈ (0, 1

2) in time
(

1
ε

)O(1) · √n.

The algorithm is as following:

1. Choose a set S by picking at random s =
(

1
ε

)O(1) · √n vertices.

2. Compute dS , the average degree of the vertices in S.

3. Repeat the above 8
ε times and report the smallest value in step 2.

The only thing left to show from last week is the following claim.

Claim 2 Let dS be the average degree of S, and let d be the average degree in G. Then

Pr[dS <
1
2
(1− ε)d] ≤ ε/64

Proof Let H ⊆ V be the
√

εn vertices of the highest degree and let L = V \ H. We
assume that S is sampled from L as this distribution is dominated by the actual dS . Then

E[dS] ≥ 1
2
· d|V | − |H|2

|L| ≥ 1
2
· (d− ε)|V |

|V | =
1
2
(d− ε)

where 1
2 comes from counting the number of edges touching L with at least one endpoint.

Let dH be the lowest degree in H and let 1 ≤ Xi ≤ dH be the degree of the i’th sampled
vertex. Then dS = 1

s

∑
Xi and by Chernoff (multiplicative) bound we have

Pr[dS <
1
2
(1− ε)d] = Pr[

1
s

∑
Xi < (1− ε)E[

1
s

∑
Xi]] ≤ exp(−ε2 · s · E[X1]

4dH
)

By taking s ≥ ε−2 dH
E[X1] we would get the required result. But we need s to be independent

of dH and E[X1]. We analyze two cases below.

2-1

Case 1 dH ≥ 1
ε |H|. Then

E[X1] =
∑

v∈L d(v)
|L| ≥ |H|dH − |H|2

|L| =
|H|(dH − |H|)

|L| ≥ |H|(1− ε)dH

|V |

Implying dH
E[X1] ≤

|V |
|H| and thus

ε−2 dH

E[X1]
≤ ε−2 |V |

|H| = poly(
1
ε
)
√

n = s

Case 2 dH < 1
ε |H|. Since E[X1] ≥ 1 we may take

ε−2 dH

E[X1]
≤ ε−3√εn = poly(

1
ε
)
√

n = s

So by taking s to be the largest of the above two, we complete the proof of the theorem.

Remark In fact there is a matching lower bound under the assumption that the algorithm
is allowed to observe only the degrees of a vertex. Any algorithm that uses only degree
queries and estimates the average degree within a ratio 2− δ for some constant δ requires
Ω(n) queries.

2 Minimum spanning trees

Given an undirected connected graph G with maximal degree ≤ D and edge weights in
{1, . . . , W}, represented as an adjacency list, we want to compute the weight of MST (G).

Theorem 3 (Chazelle, Rubinfeld, Trevisan) There is an algorithm that approximates
the cost of MST (G) within factor of 1 + ε in time O

(
(1

ε)W
3D lg(n)

)
.

We start proving the theorem with the following lemma.

Lemma 4 Let Gi be the subgraph of G containing all edges of weight at most i. Let ci be
the number of connected components in Gi. Then

MST (G) = n−W +
W−1∑

i=1

ci

Next we present an algorithms for approximating MST (G).

1. For i = 1, . . . , W estimate ĉi for ci within additive error of εn
W

2. Report n−W +
∑W−1

i=1 ĉi

Observe that assuming that step 1 succeeds w.p. ≥ 1 − 1
4W for all i, the algorithm

estimates MST (G) within factor of (1 + ε) with probability at least 3
4 .

2-2

2.1 Estimating cj

We may assume that the input is the graph Gj by ignoring the edges of weight we ≥ j. The
algorithms for estimating cj is as following:

1. Choose s = ε−2W 3 random vertices v1, . . . , vs.

2. For each vi do

• Choose r.v. 1 ≤ Xi ≤ n such that Pr[X ≥ k] = 1
k for all k = 1, . . . , n

• Perform BFS from vi until either the entire connected component is explored
and set bi = 1, or until explored X + 1 distinct vertices and set bi = 0.

3. Report ĉ = n
c

∑s
i=1 bi

The runtime is clearly s ·D ·E[X], where D comes from the BFS, and E[X] = O(lg(n)).
We first compute E[ĉ]. Let c be the number of connected components. Then

E[ĉ] =
n

s

s∑

i=1

E[bi] = nE[b1]

So it is enough to compute E[b1]:

E[b1] =
∑

C

|C|
n

Pr[X ≥ |C|] =
∑ |C|

n
· 1
|C| =

c

n

where the sum runs over all connected components C. Therefore

E[ĉ] = nE[b1] = c

Next we show that the variance of ĉ is not too large, and use Chebyshev inequality to
conclude that ĉ estimates c well.

Var[b1] = p(1− p) =
c

n
(1− c

n
) ≤ c

n

Var[ĉ] =
n2

s2

s∑

i=1

Var[bi] ≤ n2

s2

s∑

i=1

c

n
=

nc

s

By Chebyshev inequality we have

Pr[|ĉ− c| ≥ εn

W
] ≤ V ar[ĉ]W 2

n2ε2
≤ cW 2

sε2n
≤ 1

4W

3 Maximum matching

In the problem of maximum matching we are given an undirected connected graph G with
maximal degree ≤ D. The goal is to find a maximum matching, that is a maximum set of
disjoint edges.

2-3

Lemma 5 The size of any maximal matching is at least half of a maximum matching.

Theorem 6 (Nguyen, Onak) There is an algorithm that (1/2, ε)-approximates maximal
matching in time DO(D)/ε. That is with high probability the algorithm returns a value in
the range [12M − εn,M], where M is the size of maximum matching.

Let us first consider the following greedy algorithm for finding maximal matching.

1. Start with an empty set M = ∅.
2. Iterate over the edges in an arbitrary order and add an edge to M if possible

3. Output M .

Our sublinear algorithm will simulate this greedy algorithm. We will fix some order of the
edges and by sampling edges we will add an edge to M if all its neighbors are not in M .
The algorithm is the following:

1. For each edge e choose a permutation of edges by assigning each edge a random
priority p(e) ∼ U [0, 1] uniformly.

2. Choose s = O(Dε−2) edges e1, . . . , es uniformly at random from V × {1, . . . , D}.
3. For each i = 1, . . . , s explore the neighbors of ei inductively. Set Xi = 1 if none of its

neighbors is in the matching and Xi = 0 otherwise.

4. Output
∑

i Xi

s ·Dn.

2-4

