Seminar on Sublinear Time Algorithms		
	Lecture 2	
	March 24, 2010	
Lecturer: Robert Krauthgamer	Scribe by: Igor Shinkar	Updated: April 29, 2010

1 Approximate average degree in a graph - Cont.

Last time we've seen an algorithm for estimating the average degree in a graph.
Theorem 1 (Feige) There is a randomized algorithm that approximates the average degree within a factor of $2+\epsilon$ for an $\epsilon \in\left(0, \frac{1}{2}\right)$ in time $\left(\frac{1}{\epsilon}\right)^{O(1)} \cdot \sqrt{n}$.

The algorithm is as following:

1. Choose a set S by picking at random $s=\left(\frac{1}{\epsilon}\right)^{O(1)} \cdot \sqrt{n}$ vertices.
2. Compute d_{S}, the average degree of the vertices in S.
3. Repeat the above $\frac{8}{\epsilon}$ times and report the smallest value in step 2 .

The only thing left to show from last week is the following claim.
Claim 2 Let d_{S} be the average degree of S, and let d be the average degree in G. Then

$$
\operatorname{Pr}\left[d_{S}<\frac{1}{2}(1-\epsilon) d\right] \leq \epsilon / 64
$$

Proof Let $H \subseteq V$ be the $\sqrt{\epsilon n}$ vertices of the highest degree and let $L=V \backslash H$. We assume that S is sampled from L as this distribution is dominated by the actual d_{S}. Then

$$
\mathbb{E}\left[d_{S}\right] \geq \frac{1}{2} \cdot \frac{d|V|-|H|^{2}}{|L|} \geq \frac{1}{2} \cdot \frac{(d-\epsilon)|V|}{|V|}=\frac{1}{2}(d-\epsilon)
$$

where $\frac{1}{2}$ comes from counting the number of edges touching L with at least one endpoint. Let d_{H} be the lowest degree in H and let $1 \leq X_{i} \leq d_{H}$ be the degree of the i 'th sampled vertex. Then $d_{S}=\frac{1}{s} \sum X_{i}$ and by Chernoff (multiplicative) bound we have

$$
\operatorname{Pr}\left[d_{S}<\frac{1}{2}(1-\epsilon) d\right]=\operatorname{Pr}\left[\frac{1}{s} \sum X_{i}<(1-\epsilon) \mathbb{E}\left[\frac{1}{s} \sum X_{i}\right]\right] \leq \exp \left(-\frac{\epsilon^{2} \cdot s \cdot \mathbb{E}\left[X_{1}\right]}{4 d_{H}}\right)
$$

By taking $s \geq \epsilon^{-2} \frac{d_{H}}{\mathbb{E}\left[X_{1}\right]}$ we would get the required result. But we need s to be independent of d_{H} and $\mathbb{E}\left[X_{1}\right]$. We analyze two cases below.

Case $1 d_{H} \geq \frac{1}{\epsilon}|H|$. Then

$$
\mathbb{E}\left[X_{1}\right]=\frac{\sum_{v \in L} d(v)}{|L|} \geq \frac{|H| d_{H}-|H|^{2}}{|L|}=\frac{|H|\left(d_{H}-|H|\right)}{|L|} \geq \frac{|H|(1-\epsilon) d_{H}}{|V|}
$$

Implying $\frac{d_{H}}{\mathbb{E}\left[X_{1}\right]} \leq \frac{|V|}{|H|}$ and thus

$$
\epsilon^{-2} \frac{d_{H}}{\mathbb{E}\left[X_{1}\right]} \leq \epsilon^{-2} \frac{|V|}{|H|}=\operatorname{poly}\left(\frac{1}{\epsilon}\right) \sqrt{n}=s
$$

Case $2 d_{H}<\frac{1}{\epsilon}|H|$. Since $\mathbb{E}\left[X_{1}\right] \geq 1$ we may take

$$
\epsilon^{-2} \frac{d_{H}}{\mathbb{E}\left[X_{1}\right]} \leq \epsilon^{-3} \sqrt{\epsilon n}=\operatorname{poly}\left(\frac{1}{\epsilon}\right) \sqrt{n}=s
$$

So by taking s to be the largest of the above two, we complete the proof of the theorem.
Remark In fact there is a matching lower bound under the assumption that the algorithm is allowed to observe only the degrees of a vertex. Any algorithm that uses only degree queries and estimates the average degree within a ratio $2-\delta$ for some constant δ requires $\Omega(n)$ queries.

2 Minimum spanning trees

Given an undirected connected graph G with maximal degree $\leq D$ and edge weights in $\{1, \ldots, W\}$, represented as an adjacency list, we want to compute the weight of $\operatorname{MST}(G)$.

Theorem 3 (Chazelle, Rubinfeld, Trevisan) There is an algorithm that approximates the cost of $M S T(G)$ within factor of $1+\epsilon$ in time $O\left(\left(\frac{1}{\epsilon}\right) W^{3} D \lg (n)\right)$.

We start proving the theorem with the following lemma.
Lemma 4 Let G_{i} be the subgraph of G containing all edges of weight at most i. Let c_{i} be the number of connected components in G_{i}. Then

$$
M S T(G)=n-W+\sum_{i=1}^{W-1} c_{i}
$$

Next we present an algorithms for approximating $\operatorname{MST}(G)$.

1. For $i=1, \ldots, W$ estimate \hat{c}_{i} for c_{i} within additive error of $\frac{\epsilon n}{W}$
2. Report $n-W+\sum_{i=1}^{W-1} \hat{c}_{i}$

Observe that assuming that step 1 succeeds w.p. $\geq 1-\frac{1}{4 W}$ for all i, the algorithm estimates $\operatorname{MST}(G)$ within factor of $(1+\epsilon)$ with probability at least $\frac{3}{4}$.

2.1 Estimating c_{j}

We may assume that the input is the graph G_{j} by ignoring the edges of weight $w_{e} \geq j$. The algorithms for estimating c_{j} is as following:

1. Choose $s=\epsilon^{-2} W^{3}$ random vertices v_{1}, \ldots, v_{s}.
2. For each v_{i} do

- Choose r.v. $1 \leq X_{i} \leq n$ such that $\operatorname{Pr}[X \geq k]=\frac{1}{k}$ for all $k=1, \ldots, n$
- Perform BFS from v_{i} until either the entire connected component is explored and set $b_{i}=1$, or until explored $X+1$ distinct vertices and set $b_{i}=0$.

3. Report $\hat{c}=\frac{n}{c} \sum_{i=1}^{s} b_{i}$

The runtime is clearly $s \cdot D \cdot \mathbb{E}[X]$, where D comes from the BFS, and $\mathbb{E}[X]=O(\lg (n))$. We first compute $\mathbb{E}[\hat{c}]$. Let c be the number of connected components. Then

$$
\mathbb{E}[\hat{c}]=\frac{n}{s} \sum_{i=1}^{s} \mathbb{E}\left[b_{i}\right]=n \mathbb{E}\left[b_{1}\right]
$$

So it is enough to compute $\mathbb{E}\left[b_{1}\right]$:

$$
\mathbb{E}\left[b_{1}\right]=\sum_{C} \frac{|C|}{n} \operatorname{Pr}[X \geq|C|]=\sum \frac{|C|}{n} \cdot \frac{1}{|C|}=\frac{c}{n}
$$

where the sum runs over all connected components C. Therefore

$$
\mathbb{E}[\hat{c}]=n \mathbb{E}\left[b_{1}\right]=c
$$

Next we show that the variance of \hat{c} is not too large, and use Chebyshev inequality to conclude that \hat{c} estimates c well.

$$
\begin{gathered}
\operatorname{Var}\left[b_{1}\right]=p(1-p)=\frac{c}{n}\left(1-\frac{c}{n}\right) \leq \frac{c}{n} \\
\operatorname{Var}[\hat{c}]=\frac{n^{2}}{s^{2}} \sum_{i=1}^{s} \operatorname{Var}\left[b_{i}\right] \leq \frac{n^{2}}{s^{2}} \sum_{i=1}^{s} \frac{c}{n}=\frac{n c}{s}
\end{gathered}
$$

By Chebyshev inequality we have

$$
\operatorname{Pr}\left[|\hat{c}-c| \geq \frac{\epsilon n}{W}\right] \leq \frac{\operatorname{Var}[\hat{c}] W^{2}}{n^{2} \epsilon^{2}} \leq \frac{c W^{2}}{s \epsilon^{2} n} \leq \frac{1}{4 W}
$$

3 Maximum matching

In the problem of maximum matching we are given an undirected connected graph G with maximal degree $\leq D$. The goal is to find a maximum matching, that is a maximum set of disjoint edges.

Lemma 5 The size of any maximal matching is at least half of a maximum matching.
Theorem 6 (Nguyen, Onak) There is an algorithm that ($1 / 2, \epsilon$)-approximates maximal matching in time $D^{O(D)} / \epsilon$. That is with high probability the algorithm returns a value in the range $\left[\frac{1}{2} M-\epsilon n, M\right]$, where M is the size of maximum matching.

Let us first consider the following greedy algorithm for finding maximal matching.

1. Start with an empty set $M=\emptyset$.
2. Iterate over the edges in an arbitrary order and add an edge to M if possible
3. Output M.

Our sublinear algorithm will simulate this greedy algorithm. We will fix some order of the edges and by sampling edges we will add an edge to M if all its neighbors are not in M. The algorithm is the following:

1. For each edge e choose a permutation of edges by assigning each edge a random priority $p(e) \sim U[0,1]$ uniformly.
2. Choose $s=O\left(D \epsilon^{-2}\right)$ edges e_{1}, \ldots, e_{s} uniformly at random from $V \times\{1, \ldots, D\}$.
3. For each $i=1, \ldots, s$ explore the neighbors of e_{i} inductively. Set $X_{i}=1$ if none of its neighbors is in the matching and $X_{i}=0$ otherwise.
4. Output $\frac{\sum_{i} X_{i}}{s} \cdot D n$.
