Seminar on Sublinear Time Algorithms		
Lecture 4		
Lecturer: Robert Krauthgamer	April 14, 2010	

1 Testing Homomorphism of a Function

Definition 1 A function $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ is called homomorphism if $\forall x, y \in \mathbb{Z}_{n}, f(x)+f(y)=f(x+y)$.

Definition $2 A$ function $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ is called ϵ-close to homomorphism if it can be changed in at most ϵ-fraction of places $x \in \mathbb{Z}_{n}$ to become a homomorphism, otherwise it is ϵ-far.

Task Definition: Given a function f, test whether it is a homomorphism or ϵ-far from it.
Theorem 3 [Ben-Or, Luby, Rubinfeld and Coppersmith] $\forall 0 \leq \epsilon \leq \frac{1}{3}$ there is a tester for homomorphism that determines w.h.p if f is a homomorphism or ϵ-far from it in time $O\left(\frac{1}{\epsilon}\right)$.
$\underline{\text { Key Idea: Relate } \epsilon \text { to } \delta(f)=P_{\forall x, y \in \mathbb{Z}_{n}}[f(x)+f(y) \neq f(x+y)] . ~}$

Algorithm Test Homomorphism

1. Repeat $\frac{4}{\epsilon}$ times:
(a) Choose $x, y \in \mathbb{Z}_{n}$ at random and check if $f(x)+f(y)=f(x+y)$.
2. Accept if all these hold with equality, otherwise Reject.

Analysis:

Runtime: Obvious.
Correctness: Since the algorithm always accepts a homomorphism function, it is a one-sided error algorithm. For the rest of the discussion, we therefore assume that f is ϵ-far from homomorphism. We wish to show that $P($ algorithm accepts $f) \leq \frac{1}{3}$.
A simple but important observation in this context is that if f is ϵ-close to homomorphism then there exists a "corrected" function $g: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ which is both homomorphism and ϵ-close to f. This function g is defined as follow: $g(x)=$ plurality $_{y} f(x+y)-f(y)$. Intuitively, the value $f(x+y)-f(y)$ can be thought of as the "vote" of y on x. If f is ϵ-close to homomorphism, then most of the votes for a given x are the same, resulting in a homomorphism function g. To prove this intuition in a formal manner, we state two auxiliary claims.

Claim $4 f$ and g agree on at least $1-2 \delta$ values.
Claim 5 If $\delta(f) \leq \frac{1}{6}$ then g is homomorphism.
Assuming these claims to be correct, we turn to prove Theorem [3].

Proof [of Theorem 3]

Recall that we consider the case where f is ϵ-far from homomorphism. First, assume that $\delta(f) \leq \frac{\epsilon}{2}\left(<\frac{1}{6}\right)$. By Claim 四 and Claim we have that f is $2 \delta(f) \leq \epsilon$ close to homomorphism, and we end with a contradiction. Next, assume that $\delta(f)>\frac{\epsilon}{2}$. We will see that in this case the algorithm will reject the function w.h.p.:
$P[$ alg accepts $f] \leq(1-\delta(f))^{\frac{4}{\epsilon}} \leq\left(1-\frac{\epsilon}{2}\right)^{\frac{4}{\epsilon}}<e^{-2}<\frac{1}{3}$ as required.
It is yet left to prove the supporting claims. We begin with Claim T.

Proof [of Claim (4]

Let $\Delta(f, g)$ denote the fraction of disagreements between f and g.
Let $B=\left\{x: \operatorname{Pr}_{y}[f(x)+f(y) \neq f(x+y)] \geq \frac{1}{2}\right\}$. Notice that B contains all the $x^{\prime} s$ where f and g disagree. In addition, $\delta(f) \geq \frac{|B|}{n} \cdot \frac{1}{2}$, where $\frac{|B|}{n}$ is the probability to choose a bad x, and $\frac{1}{2}$ is a lower bound for the probability to chose a bad partner y. Overall we have that $\Delta(f, g) \leq \frac{|B|}{n} \leq 2 \delta(f)$ as required.

As a step toward proving Claim we state the following claim.

Claim 6 The function g is a strong plurality (if δ is small) in the following sense, $\forall x, P_{y}[g(x)=f(x+y)-f(y)] \geq 1-\delta(f)$.

Proof [of Claim 6]

We first analyze for an arbitrary $x \in \mathbb{Z}_{n}$ the "collision probability" of two votes and then relate it to the "plurality probability" as required by the claim.
Fix x and choose y_{1}, y_{2} at random and independently. Then we have that
$P_{y_{1}, y_{2}}\left[f\left(x+y_{1}\right)-f\left(y_{1}\right)=f\left(x+y_{2}\right)-f\left(y_{2}\right)\right]=$
$P_{y_{1}, y_{2}}\left[f\left(x+y_{1}\right)+f\left(y_{2}\right)=f\left(x+y_{2}\right)+f\left(y_{1}\right)\right] \geq$
$P_{y_{1}, y_{2}}\left[f\left(x+y_{1}\right)+f\left(y_{2}\right)=f\left(x+y_{2}\right)+f\left(y_{1}\right)=f\left(x+y_{1}+f\left(y_{2}\right)\right] \geq 1-2 \delta(f)\right.$
Where the last inequality follows by the union-bound. To show that the "collision probability" is at most the "plurality probability", we consider an experiment A with n possible outcomes, where $o(A) \in[1, n]$ denotes the outcome of A. Let $p_{i}=P[o(A)=i]$, i.e., the probability where that the experiment ended with outcome i., where $p_{i}>0$ for every $1 \leq i \leq n$, and $\sum_{i=1}^{n} p_{i}=1$. The probability that two independent experiments A, B ended with the same outcome (i.e., collision occurred) is given by
$P[o(A)=o(B)]=\sum_{i=1}^{n} p_{i}^{2} \leq \max _{j}\left(p_{j}\right) \cdot \sum_{i=1}^{n} p_{i}=\max _{j}\left(p_{j}\right) \cdot 1=\max _{j}\left(p_{j}\right)$.
Since $\max _{j}\left(p_{j}\right)$ is the "plurality probability" the claim is established.
We are now ready to complete the proof for Claim

Proof [of Claim [5]

Fix x, z. By applying Claim three times, first for x, then for z and finally for $x+z$, we get

1) $P_{y}[g(x) \neq f(x+y-x)-f(y-x)] \leq 2 \delta(f)<\frac{1}{3}$
2) $P_{y}[g(z) \neq f(z+y)-f(y)] \leq 2 \delta(f)<\frac{1}{3}$
3) $P_{y}[g(x+z) \neq f(x+z+y-x)-f(y-x)] \leq 2 \delta(f)<\frac{1}{3}$

With positive probability none of these events happen, implying that $\exists y$ such that $g(x)+g(z)=[f(y)-f(y-x)]+[f(z+y)-f(y)]=g(x+z)$
where the first equality is followed by $(1,2)$ and the second equality is followed by (3). The Claim follows.

2 Testing a Dense Graph for Bipartiteness

Definition 7 Graph $G=(V, E)$ is ϵ-far from bipartite if it is necessary to remove more than $\epsilon|V|^{2}$ edges so that it becomes bipartite.

Task definition: Given a dense graph $G=(V, E)$, determine w.h.p if it is bipartite or ϵ-far from it.

Theorem 8 (Goldreich-Goldwasser-Ron) There is a tester for bipartiteness that determines whether G is bipartite or ϵ-far from it in time $\left(\frac{1}{\epsilon}\right)^{O(1)}$.

In particular, the tester we present always accepts bipartite graphs and rejects ϵ-far instances with probability at least $\frac{2}{3}$.

Key Idea: Sampling small number of vertices is in fact representative.

Algorithm Test-Bipartite

1. Uniformly and independently select $m=\Theta\left(\frac{\log \left(\frac{1}{\epsilon}\right)}{\epsilon^{2}}\right)$ vertices.
2. Accept iff the subgraph induced on them is bipartite (by BFS)

Analysis:

Runtime: $\Theta\left(\frac{\log ^{2}\left(\frac{1}{\epsilon}\right)}{\epsilon^{4}}\right)$. Quadratic in the size of the sample due to construction of the induced subgraph.
Correctness: If G is bipartite then clearly so is every subgraph of it. Hence, this is a onesided error tester. We next assume that G is ϵ-far from bipartite and wish to show it is rejected by the algorithm with probability greater than $\frac{2}{3}$.
Let R denote the set of sampled vertices. It is convenient to view R as composed of two parts that are sampled one after the other, namely U and S respectively. Let $|U|=O\left(\frac{1}{\epsilon} \log \frac{1}{\epsilon}\right)$ and $|S|=O\left(\frac{|U|}{\epsilon}\right)$. One can check that indeed $m=|U|+|S|$. Note, that since the vertices are selected independently, repetitions may occur (e.g., U and S may overlap). We first provide some definitions.

Definition 9 vertex v is high-degree if its degree is greater than $\frac{\epsilon n}{3}$.
Definition 10 Set $U \in V$ is good if all but at most $\frac{\epsilon n}{3}$ of the high-degree vertices of V are adjacent to U.

Let $\Gamma(w)=\{v:(w, v) \in E\}$ (the neighbors of w$)$.
Let $\Gamma(W)=\cup_{w \in W} \Gamma(w)$.

Claim 11 With probability of at least $\frac{5}{6}$ over the choice of U, the set U is good.

Proof

Let $v \in V$ be a high-degree vertex. The probability that U contains none of $v^{\prime} s$ neighbors is at most

$$
\begin{equation*}
\left(1-\frac{\epsilon}{3}\right)^{|U|}<e^{\frac{\epsilon}{3} \cdot|U|} \tag{1}
\end{equation*}
$$

If we sample $|U|=\frac{3}{\epsilon} \cdot \ln \left(\frac{18}{\epsilon}\right)$, we get that this probability is at most $\left(\frac{\epsilon}{18}\right)$. By linearity of expectation, the expected number of such $v^{\prime} s$ is $\leq \frac{\epsilon n}{18}$. Finally by Markov's inequality, the probability that there are more than $\frac{\epsilon n}{3}$ such $v^{\prime} s$ (high-degree vertices with no neighbor in $U)$ is at most $\frac{1}{6}$ as required.

Definition 12 An edge is said to disturb a partition $U=U_{1} \bigcup U_{2}$ if its endpoints are in the same $\Gamma\left(U_{i}\right)$ for $i \in[1,2]$.

Claim 13 If G is ϵ-far from bipartite then for every good U and for every partition of $U=U_{1} \bigcup U_{2}$ there are at least $\frac{\epsilon n^{2}}{3}$ disturbing edges.

Proof

Assume U is indeed good and consider a fixed partition $U=U_{1} \bigcup U_{2}$. Let $N=\Gamma(U)$ and $C=V \backslash N$. Since U is good, we have that C contains at most $\frac{\epsilon n}{3}$ high-degree vertices. We next use the partition of U to induce a partition of N and eventually on V in the following manner:
$N_{1}=\Gamma\left(U_{1}\right)$ and $N_{2}=\Gamma(U) \backslash N_{1}$. Let C_{1}, C_{2} be any partition of C such that $\left(C \bigcap U_{1}\right) \subseteq C_{1}$
and $\left(C \bigcap U_{2}\right) \subseteq C_{2}$. The final partition of $V=V_{1} \bigcup V_{2}$ is $V_{1}=N_{1} \bigcup C_{2}$ and $V_{2}=N_{2} \bigcup C_{1}$. Observe that since G is ϵ-far from bipartite, every partition of V has more than ϵn^{2} "disturbing" edges. In particular this is correct for the partition $\left(V_{1}, V_{2}\right)$. We next show that many of these "disturbing" edges are incident to vertices in U.
Q: How many disturbing edges at-most can be incident to C (i.e., not incident to N)?
Ans.: C contains at-most n edges from each of at-most $\frac{\epsilon n}{3}$ high-degree vertices. In addition, it contains at-most $\frac{\epsilon n}{3}$ edges from each of at-most n non-high-degree vertices.
Overall, we get that the are at least $\frac{\epsilon n^{2}}{3}$ disturbing edges that are incident to N.
We are now ready to complete the proof of Theorem $\boldsymbol{\nabla}$.

Proof [of Theorem $\mathbb{8}]$

Let $G[R]$ be the graph induced by the the selected set R. For $G[R]$ to be bipartite we must have either:

1) U is not $\operatorname{good}\left(w . p \leq \frac{1}{6}\right)$
2) U is good and \exists a partition $U=U_{1} \bigcup U_{2}$ such that none of its disturbing edges occur in $G[R]$. Applying the union-bound over the possible $2^{|U|}$ partitions of $|U|$ and combining Claim [.].], we get that the probability for such an event is at most
$2^{|U|}\left(1-\frac{\epsilon}{3}\right)^{\frac{|S|}{2}}=2^{|U|} \cdot e^{\frac{-\epsilon|S|}{6}}<\frac{1}{6}$.
Overall, the probability to accept an ϵ-far graph G is at-most $\frac{1}{6}+\frac{1}{6}=\frac{1}{3}$ as required.
