# Randomized Algorithms 2013A <br> Lecture 2 - The second moment and data-stream algorithms* 

Robert Krauthgamer

## 1 The second moment

Chebychev's inequality: Let $X$ be a random variable with finite variance $\sigma^{2}>0$. Then

$$
\forall t \geq 1, \quad \operatorname{Pr}[|X-\mathbb{E} X| \geq t \sigma] \leq \frac{1}{t^{2}}
$$

Intuition: Such a random variable is WHP in the range $\mu \pm \sigma$.
Proof: seen in class based on Markov's inequality.
Exer: Prove Markov's inequality. (Hint: use the law of total expectation.)

## 2 More occupancy problems

### 2.1 Empty bins for $m=n$ balls

Let $Z_{i}$ be an indicator for the event that bin $i$ is empty, which in the languange of previous class is just $I_{\left\{X_{i}=0\right\}}$. Denote the number of empty bins by $Z=\sum_{i} Z_{i}$, then we saw last week $\mathbb{E}[Z] \approx n / e$. Can we give a high probability bound on the value of $Z$ ?

$$
\mathbb{E}\left[Z^{2}\right]=\mathbb{E}\left[\sum_{i, j} Z_{i} Z_{j}\right]=\sum_{i, j} \operatorname{Pr}\left[Z_{i}=Z_{j}=1\right]=\sum_{i \neq j}(1-2 / n)^{n}+\sum_{i}(1-1 / n)^{n} \approx \frac{n(n-1)}{e^{2}}+\frac{n}{e} \approx \frac{n^{2}}{e^{2}} .
$$

Thus, when analyzing $\operatorname{Var}(Z)=\mathbb{E}\left[Z^{2}\right]-(\mathbb{E} Z)^{2} \approx \frac{n^{2}}{e^{2}}-\frac{n^{2}}{e^{2}}$ requires going into lower order terms...
Exer: Prove that $\operatorname{Var}(Z) \leq O(n)$.
Using the exercise, we can conclude that WHP $Z=\frac{n}{e} \pm O(\sqrt{n})$.

[^0]
### 2.2 Hitting all bins (coupon collector)

Let $Y_{i}$ be the number balls thrown until $i$ distinct bins are hit. We are interested in $Y_{n}$, and by definition $Y_{1}=1$. Observe that $Z_{i}=Y_{i}-Y_{i-1}$ has geometric distribution $G\left(p=\frac{n-(i-1)}{n}\right)$. Thus,

$$
\mathbb{E}\left[Z_{i}\right]=\frac{1}{p}=\frac{n}{n-i+1}, \quad \operatorname{Var}\left(Z_{i}\right)=(1-p) / p^{2}=\frac{i-1}{n} \cdot \frac{n^{2}}{(n-i+1)^{2}}=\frac{(i-1) n}{(n-i+1)^{2}} .
$$

Since we can write $Y_{n}=\sum_{i=1}^{n} Z_{i}$ (by convention $Z_{1}=1$ ), we can easily see that $\mathbb{E}\left[Y_{n}\right] \approx n \ln n$ and $\operatorname{Var}\left(Y_{n}\right) \leq O\left(n^{2}\right)$. Thus, using Chebyshev's inequality,

$$
\operatorname{Pr}\left[Y_{n}>3 n \ln n\right] \leq \operatorname{Pr}\left[Y_{n}-\mathbb{E} Y_{n} \geq 2 n \ln n\right] \leq O\left(1 / \ln ^{2} n\right) .
$$

But we can get a stronger bound using a direct calculation:

$$
\operatorname{Pr}\left[X_{1}=0\right] \leq(1-1 / n)^{m} \leq e^{-m / n}=1 / n^{3},
$$

hence

$$
\operatorname{Pr}\left[\exists i, X_{i}=0\right] \leq n \operatorname{Pr}\left[X_{1}=0\right] \leq 1 / n^{2} .
$$

### 2.3 Collisions for $m=c \sqrt{n}$ (birthday paradox)

We shall use Chebyshev's inequality, although it's also possible to analyze via a direct computation.
Exer: Show that if $c>0$ is a sufficiently small constant, then with high (constant) probability there are no collisions, i.e., the maximum load is $\max _{i} X_{i} \leq 1$. (Hint: Look at every pair of balls.)

Exer: Show that if $c>0$ is a sufficiently large constant, then with high (constant) probability there is at least one collision, i.e., $\max _{i} X_{i} \geq 2$. (Hint: Look at every pair of balls.)

## 3 AMS algorithm for $\ell_{2}$-norm of a data stream

## Data stream model:

Input: a vector $x \in \mathbb{R}^{n}$, given as a stream (sequence) of $m$ updates of the form $(i, a)$, meaning $x_{i} \leftarrow x_{i}+a$.

Motivation: We receive a stream of $m$ items, each in the range $[n]$, and we let $x_{i}$ is the frequency of item $i$. Upon seeing an item $i \in[n]$, we update $(i,+1)$. Then the second frequency moment $F_{2}$ is just $\|x\|_{2}^{2}$.
$\ell_{p}$-norm problem:
Assumption: updates $a$ are integral and $\left|x_{i}\right| \leq \operatorname{poly}(n)$.
Goal: estimate its $\ell_{p}$-norm $\|x\|_{p}$. It's usually more convenient to work with its $p$-th power $\left(\|x\|_{p}\right)^{p}=$ $\sum_{i=1}^{n}\left|x_{i}\right|^{p}$.

We focus here on $p=2$. Note that we could have $a<0$ (deletions) and maybe even $x_{i}<0$.
Linear sketch: We shall use a randomized linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{s}$ for small $s>0$. The algorithm will only maintain $L x$, which is easy to update since:

$$
L\left(x+a e_{i}\right)=L x+a\left(L e_{i}\right) .
$$

Of course, one has to choose $L$ that somehow "stores" $\|x\|_{2}$. Note that $L$ is essentially an $s \times n$ (real) matrix.

The memory requirement depends on the dimension $s$, the accuracy needed for each coordinate, and the representation of $L$ (more precisely, storing a few random bits that suffice to produce $L_{i j}$ on the fly).

Theorem 1 [Alon-Matthias-Szegedy'96]: One can estimate the $\ell_{2}$ norm within factor $1+\varepsilon$ using a linear sketch of $s=O\left(\varepsilon^{-2} \log n\right)$ memory words.

## Algorithm $A$ :

1. Choose initially $r_{1}, \ldots, r_{m}$ independently and uniformly at random from $\{-1,+1\}$.
2. Maintain $Z=\sum_{i} r_{i} x_{i}$ (a linear sketch, hence can be updated as above).
3. Output: $Z^{2}$.

Analysis of expectation: As seen in class, $\mathbb{E}\left[Z^{2}\right]=\sum_{i} x_{i}^{2}=\|x\|_{2}^{2}$.
We aren't done yet since we want to get $1+\varepsilon$ accuracy...
Analysis of second moment: As seen in class, $\operatorname{Var}\left(Z^{2}\right) \leq \mathbb{E}\left[Z^{4}\right] \leq 3\left(\mathbb{E}\left[Z^{2}\right]\right)^{2}$.
Algorithm B: Execute $t=O\left(1 / \varepsilon^{2}\right)$ independent copies of Algorithm A, denoting their estimates by $Y_{1}, \ldots, Y_{t}$, and output their mean $\tilde{Y}=\sum_{j} Y_{j} / t$.
Observe that the sketch $\left(Y_{1}, \ldots, Y_{t}\right) \in \mathbb{R}^{t}$ is still linear.
Analysis: As seen in class, using Chebychev's inequality and an appropriate $t=O\left(1 / \varepsilon^{2}\right)$

$$
\operatorname{Pr}\left[\tilde{Y} \neq(1 \pm \varepsilon)\|x\|_{2}^{2}\right] \leq \frac{3}{t \varepsilon^{2}} \leq 1 / 3 .
$$

Space requirement: $t=O\left(1 / \varepsilon^{2}\right)$ words (for constant success probability), without counting memory used to represent/store $L$.

Concern: How do we store the $n$ values $r_{1}, \ldots, r_{n}$ ?
Exer: For what value of $k$ would the basic analysis work assuming that $r_{1}, \ldots, r_{n}$ are $k$-wise independent?

Exer: What would happen (to accuracy analysis) if the $r_{i}$ 's were chosen as standard gaussians $N(0,1)$ ?

## High probability bound:

Lemma: Let $B^{\prime}$ be a randomized algorithm to approximate some function $f(x)$, i.e.,

$$
\forall x, \quad \operatorname{Pr}\left[B^{\prime}(x)=(1 \pm \varepsilon) f(x)\right] \geq 2 / 3 .
$$

Let algorithm $C$ output the median of $O\left(\log \frac{1}{\delta}\right)$ independent executions of algorithm $B^{\prime}$. Then

$$
\forall x, \quad \operatorname{Pr}[C(x)=(1 \pm \varepsilon) f(x)] \geq 1-\delta .
$$

Exer: prove this lemma. (Hint: Use the Chernoff-Hoeffding bound.)

## 4 Count-min sketch for $\ell_{1}$ point queries

## $\ell_{p}$ point query problem:

Goal: at the end of the stream, given query $i$, report, for a parameter $\alpha \in(0,1)$,

$$
\tilde{x}_{i}=x_{i} \pm \alpha\|x\|_{p} .
$$

Observe: $\|x\|_{1} \geq\|x\|_{2} \geq \ldots \geq\|x\|_{\infty}$, hence higher norms (larger $p$ ) gives better accuracy.
Exer: Show that the $\ell_{1}$ and $\ell_{2}$ norms differ by at most a factor of $\sqrt{n}$, and that this is tight. Do the same for $\ell_{2}$ and $\ell_{\infty}$.

Theorem 2 [Cormode-Muthukrishnan'05]: One can answer $\ell_{1}$ point queries within error $\alpha$ with probability $1-1 / n^{2}$ using a linear sketch of $O(\alpha-1 \log n)$ memory words.

Algorithm $D$ : (We assume for now $x_{i} \geq 0$ for all $i$.)

1. Set $w=2 / \alpha$ and choose a random function $h:[m] \rightarrow[w]$ (actually, a hash function).
2. Maintain a table $Z=\left[Z_{1}, \ldots, Z_{w}\right]$ where each $Z_{j}=\sum_{i: h(i)=j} x_{i}$ (which is a linear sketch).
3. When asked to estimate $x_{i}$, output $\tilde{x}_{i}=Z_{h(i)}$.

Analysis (correctness): As seen in class, $\tilde{x}_{i} \geq x_{i}$ holds always, and using Markov's inequality, $\operatorname{Pr}\left[\tilde{x}_{i}-x_{i} \geq \alpha\|x\|_{1}\right] \leq 1 / 2$.

Algorithm $E$ : Execute $t=O(\log n)$ independent copies of algorithm $D$, i.e., maintain vectors $Z^{1}, \ldots, Z^{t}$ and functions $h^{1}, \ldots, h^{t}$. When asked to estimate, output the minimum among the $t$ estimates, i.e., $\hat{x}_{i}=\min _{l} Z_{h^{l}(i)}^{l}$.

Analysis (correctness): Setting $t=O(\log n)$ we have

$$
\operatorname{Pr}\left[\left|\hat{x}_{i}-x_{i}\right| \geq \alpha\|x\|_{1}\right] \leq(1 / 2)^{t}=1 / n^{2} .
$$

Space requirement: $O\left(\alpha^{-1} \log n\right)$ words (for success probability $\left.1-1 / n^{2}\right)$, without counting memory used to represent the hash functions.
Exer: Extend the algorithm to general $x$. (Hint: replace the min operator by median.)


[^0]:    *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

