Randomized Algorithms 2013A – Problem Set 1

Robert Krauthgamer

November 5, 2012

In class we discussed randomized quicksort, the Chernoff-Hoeffding concentration bounds, and some occupancy problems.

1. Analyze the following algorithm, a variant of binary search, for finding a query element q in a sorted array A of size n, and show that with high probability it terminates in $O(\log n)$ steps.

Algorithm Randomized-Search: Starting with the interval [l, h] = [1, n], repeatedly choose uniformly at random a pivot $p \in [l, h]$, compare q to A[p] and update the interval to be either [l, p - 1] or [p + 1, h], stopping if A[p] = q or l > h.

2. Let a_1, \ldots, a_n be an array of numbers in the range [0, 1]. Design a randomized algorithm that reads only $O(1/\varepsilon^2)$ elements, and estimates their average within additive error $\pm \varepsilon$. The algorithm should succeed with probability at least 90%.

Extra credit:

3. Let a_1, \ldots, a_n be again an array of numbers in the range [0,1]. Now design similarly a randomized algorithm that estimates their population variance $\frac{1}{n} \sum_i a_i^2 - (\frac{1}{n} \sum_i a_i)^2$.

Note: population variance refers to a set of reals, while the usual word variance refers to a random variable.

Hint: Estimate each of the two terms separately using the preceding exercise.