Randomized Algorithms 2013A – Problem Set 2

Robert Krauthgamer

November 20, 2012

1. Let B be a randomized algorithm that approximates some function f(x) as follows:

$$\forall x, \quad \Pr\left[B(x) \in (1 \pm \varepsilon)f(x)\right] \ge 2/3.$$

Let algorithm C output the median of $O(\log \frac{1}{\delta})$ independent executions of algorithm B on the same input. Prove that

$$\forall x, \quad \Pr\left[C(x) \in (1 \pm \varepsilon)f(x)\right] \ge 1 - \delta.$$

2. Let A, B, C be three $n \times n$ matrices over a field F such that $AB \neq C$. Show that if $r \in \{0, 1\}^n$ is chosen uniformly at random, then $\Pr[ABr \neq Cr] \ge 1/2$.

Use the above to design a randomized algorithm that checks, given three such matrices as input, whether AB = C. The algorithm should run in time $O(n^2)$, without any matrix multiplication.

If necessary, assume the field F is just GF[2] or \mathbb{Q} .

Extra credit:

- 3. Let $X_1, \ldots, X_n \in \{-1, +1\}$ be chosen independently uniformly at random, and fix *m* distinct non-empty subsets $S_1, \ldots, S_m \subseteq [n]$.
 - (a) Define the polynomial $p(x_1, \ldots, x_n) := \sum_{i=1}^m (\prod_{k \in S_i} x_k)$, and show that with high (constant) probability (over the choice of the X_i 's), $|p(X_1, \ldots, X_n)| \leq O(\sqrt{m})$. Example: $p(X_1, X_2, X_3) = X_1 + X_2 + X_3 + X_1 X_2$ can be viewed as four steps of a random walk on \mathbb{Z} , where the first two steps completely determine the fourth one. Hint: Use the second moment method.
 - (b) Show that the assertion in part (a) holds also when the X_i 's are independent standard gaussians N(0, 1).
 - (c) Generalize part (a) to a polynomial $p'(x_1, \ldots, x_n) = \sum_{i=1}^m (a_i \prod_{k \in S_i} x_k)$, where $a_1, \ldots, a_m \in \mathbb{R}$ are fixed coefficients.

Hint: The bound should depend on the norm of the vector $\vec{a} = (a_1, \ldots, a_m)$.