Randomized Algorithms 2013A - Problem Set 2

Robert Krauthgamer

November 20, 2012

1. Let B be a randomized algorithm that approximates some function $f(x)$ as follows:

$$
\forall x, \quad \operatorname{Pr}[B(x) \in(1 \pm \varepsilon) f(x)] \geq 2 / 3
$$

Let algorithm C output the median of $O\left(\log \frac{1}{\delta}\right)$ independent executions of algorithm B on the same input. Prove that

$$
\forall x, \quad \operatorname{Pr}[C(x) \in(1 \pm \varepsilon) f(x)] \geq 1-\delta .
$$

2. Let A, B, C be three $n \times n$ matrices over a field F such that $A B \neq C$. Show that if $r \in\{0,1\}^{n}$ is chosen uniformly at random, then $\operatorname{Pr}[A B r \neq C r] \geq 1 / 2$.
Use the above to design a randomized algorithm that checks, given three such matrices as input, whether $A B=C$. The algorithm should run in time $O\left(n^{2}\right)$, without any matrix multiplication.

If necessary, assume the field F is just $G F[2]$ or \mathbb{Q}.

Extra credit:

3. Let $X_{1}, \ldots, X_{n} \in\{-1,+1\}$ be chosen independently uniformly at random, and fix m distinct non-empty subsets $S_{1}, \ldots, S_{m} \subseteq[n]$.
(a) Define the polynomial $p\left(x_{1}, \ldots, x_{n}\right):=\sum_{i=1}^{m}\left(\prod_{k \in S_{i}} x_{k}\right)$, and show that with high (constant) probability (over the choice of the X_{i} 's), $\left|p\left(X_{1}, \ldots, X_{n}\right)\right| \leq O(\sqrt{m})$.
Example: $p\left(X_{1}, X_{2}, X_{3}\right)=X_{1}+X_{2}+X_{3}+X_{1} X_{2}$ can be viewed as four steps of a random walk on \mathbb{Z}, where the first two steps completely determine the fourth one.
Hint: Use the second moment method.
(b) Show that the assertion in part (a) holds also when the X_{i} 's are independent standard gaussians $N(0,1)$.
(c) Generalize part (a) to a polynomial $p^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{m}\left(a_{i} \prod_{k \in S_{i}} x_{k}\right)$, where $a_{1}, \ldots, a_{m} \in$ \mathbb{R} are fixed coefficients.
Hint: The bound should depend on the norm of the vector $\vec{a}=\left(a_{1}, \ldots, a_{m}\right)$.
