Randomized Algorithms 2013A - Problem Set 4

Robert Krauthgamer and Moni Naor

December 31, 2012

1. Recall the Benczur-Karger cut sparsification algorithm seen in class. Suppose the algorithm can use (to determine the probabilities p_{e}) only an approximation to c_{e}, say a factor 3 estimate $\hat{c}_{e} \in\left[c_{e}, 3 c_{e}\right]$. Show how to adapt the algorithm and its analysis.
Explain the differences without repeating the entire analysis.
2. Recall the Thorup-Zwick distance oracle construction, and prove that for every $v \in V$,

$$
\mathbb{E}[|B(v)|] \leq k n^{1 / k}
$$

3. Analyze the following construction for a small data structure that approximates distances within factor 3 . Write explcitly the overall storage required (there is no fast query time), and whether the factor 3 in accuracy of queries is worst-case, in expectation, or with high probability.
Preprocess(G): Choose $L \subseteq V$ as a random set of $l=O(\sqrt{n} \log n)$ "landmark" vertices (for simplicitly, say with repetitions). For every vertex $v \in V$, store its distance (i) to each of the \sqrt{n} vertices closest to it, denoted $B_{v} \subset V$ (break ties arbitrarily); and (ii) to all the landmark vertices.
Query $(\mathrm{u}, \mathrm{v}):$ If $u \in B_{v}$, i.e., is among the \sqrt{n} closest to v, report the distance. Otherwise, report $\min _{w \in L}[d(u, w)+d(w, v)]$.
Hint: in the "otherwise" case, try to argue that $L \cap B_{v} \neq \emptyset$.

Extra credit:

4. Show that for every n there are an n-vertex graph G and some $\varepsilon>0$, for which every $(1+\varepsilon)$-cut sparsifier G^{\prime} must have $\left|E\left(G^{\prime}\right)\right| \geq \Omega(n / \varepsilon)$ (or a similar bound).
Hint: Consider a complete graph, and start with proving for the case $\varepsilon=0$ that $\left|E\left(G^{\prime}\right)\right| \geq$ $\Omega\left(n^{2}\right)$. Then extend it to very small $\varepsilon>0$.
