Randomized Algorithms 2013A – Problem Set 4

Robert Krauthgamer and Moni Naor

December 31, 2012

1. Recall the Benczur-Karger cut sparsification algorithm seen in class. Suppose the algorithm can use (to determine the probabilities p_e) only an approximation to c_e , say a factor 3 estimate $\hat{c}_e \in [c_e, 3c_e]$. Show how to adapt the algorithm and its analysis.

Explain the differences without repeating the entire analysis.

2. Recall the Thorup-Zwick distance oracle construction, and prove that for every $v \in V$,

 $\mathbb{E}[|B(v)|] \le kn^{1/k}.$

3. Analyze the following construction for a small data structure that approximates distances within factor 3. Write explcitly the overall storage required (there is no fast query time), and whether the factor 3 in accuracy of queries is worst-case, in expectation, or with high probability.

Preprocess(G): Choose $L \subseteq V$ as a random set of $l = O(\sqrt{n} \log n)$ "landmark" vertices (for simplicitly, say with repetitions). For every vertex $v \in V$, store its distance (i) to each of the \sqrt{n} vertices closest to it, denoted $B_v \subset V$ (break ties arbitrarily); and (ii) to all the landmark vertices.

Query(u,v): If $u \in B_v$, i.e., is among the \sqrt{n} closest to v, report the distance. Otherwise, report $\min_{w \in L} [d(u, w) + d(w, v)]$.

Hint: in the "otherwise" case, try to argue that $L \cap B_v \neq \emptyset$.

Extra credit:

4. Show that for every *n* there are an *n*-vertex graph *G* and some $\varepsilon > 0$, for which every $(1 + \varepsilon)$ -cut sparsifier *G'* must have $|E(G')| \ge \Omega(n/\varepsilon)$ (or a similar bound).

Hint: Consider a complete graph, and start with proving for the case $\varepsilon = 0$ that $|E(G')| \ge \Omega(n^2)$. Then extend it to very small $\varepsilon > 0$.