Seminar on Algorithms and Geometry 2014B – Problem Set 1

Robert Krauthgamer

April 6, 2014

We discussed in class an algorithm for $(1 + \varepsilon)$ -approximate Nearest Neighbor Search, by relying on the doubling dimension of the dataset.

- 1. Consider the metric space $M = \mathbb{R}^k$ with distances according to the ℓ_{∞} -norm, i.e., $d(x, y) = \|x y\|_{\infty}$. Prove that $\operatorname{ddim}(M) \leq O(k)$.
- 2. Let k = ddim(M) and define k' similarly using diameter instead of radius (covering by sets of half the diameter). Prove that $k' \leq O(k)$.
- 3. Design a variant of the query algorithm, where instead of keeping a set of points Z_i , we keep only one point z_i , which is computed (iteratively) as the point closest to q inside the list $L_{z_{i+1},i+1}$. Show that your variant finds an O(1)-approximate NNS.

For simplicity (avoiding handling special cases) you may assume that $OPT = d(q, S) \in [10, \operatorname{diam}(S)/10]$. If needed, change the constant in the definition of $L_{y,i}$.