# Seminar on Algorithms and Geometry 2014B - Problem Set 2 

Robert Krauthgamer

April 10, 2014

We discussed in class the random projection method for dimension reduction and an algorithm for approximating Max-Cut via semidefinite programming.

1. Recall the random linear map $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{d}$ seen in class for dimension reduction of $n$ points in $\mathbb{R}^{m}$.
Prove for every two unit-length vectors $u, v \in \mathbb{R}^{m}$, with high probability

$$
\langle L u, L v\rangle=\langle u, v\rangle \pm O(\varepsilon) .
$$

This shows that the map $L$ approximately preserves inner products additively.
Hint: Just rely on what we already know about $L$ preserving distances.
2. Recall the following notation from class. $O P T$ is the optimum Max-Cut value for a given graph $G$ (we saw it is equal to the value of the quadratic program $Z_{Q P}$ ), and $z_{V P}$ is the value of the vector-program (relaxation of Max-Cut on $G$ ).
Consider adding to that vector program the following constraints

$$
\begin{array}{ll}
\left\|v_{i}-v_{j}\right\|^{2} \leq\left\|v_{i}-v_{k}\right\|^{2}+\left\|v_{k}-v_{j}\right\|^{2}, & \forall i, j, k \in V, \\
\left\|v_{i}-v_{j}\right\|^{2} \leq\left\|v_{i}-\left(-v_{k}\right)\right\|^{2}+\left\|\left(-v_{k}\right)-v_{j}\right\|^{2}, & \forall i, j, k \in V,
\end{array}
$$

and denote the value of the resulting vector program by $z_{N E W}$.
Prove that for every graph $G$,

$$
O P T \leq z_{N E W} \leq z_{V P}
$$

Extra credit: Show a graph $G$ for which $z_{N E W}<z_{V P}$. (Hint: Consider a triangle (3-cycle), bound $z_{V P}$ by exhibiting a vector solution, and bound $z_{N E W}$ by plugging into its objective the second constraint above.)

