## Seminar on Algorithms and Geometry 2014B – Problem Set 2

**Robert Krauthgamer** 

April 10, 2014

We discussed in class the random projection method for dimension reduction and an algorithm for approximating Max-Cut via semidefinite programming.

1. Recall the random linear map  $L : \mathbb{R}^m \to \mathbb{R}^d$  seen in class for dimension reduction of n points in  $\mathbb{R}^m$ .

Prove for every two unit-length vectors  $u, v \in \mathbb{R}^m$ , with high probability

 $\langle Lu, Lv \rangle = \langle u, v \rangle \pm O(\varepsilon).$ 

This shows that the map L approximately preserves inner products additively.

Hint: Just rely on what we already know about L preserving distances.

2. Recall the following notation from class. OPT is the optimum Max-Cut value for a given graph G (we saw it is equal to the value of the quadratic program  $Z_{QP}$ ), and  $z_{VP}$  is the value of the vector-program (relaxation of Max-Cut on G).

Consider adding to that vector program the following constraints

$$\begin{aligned} \|v_i - v_j\|^2 &\le \|v_i - v_k\|^2 + \|v_k - v_j\|^2, & \forall i, j, k \in V, \\ \|v_i - v_j\|^2 &\le \|v_i - (-v_k)\|^2 + \|(-v_k) - v_j\|^2, & \forall i, j, k \in V, \end{aligned}$$

and denote the value of the resulting vector program by  $z_{NEW}$ .

Prove that for every graph G,

 $OPT \leq z_{NEW} \leq z_{VP}.$ 

Extra credit: Show a graph G for which  $z_{NEW} < z_{VP}$ . (Hint: Consider a triangle (3-cycle), bound  $z_{VP}$  by exhibiting a vector solution, and bound  $z_{NEW}$  by plugging into its objective the second constraint above.)