Randomized Algorithms 2015A – Final Exam

Robert Krauthgamer and Moni Naor

February 24, 2015

General instructions. The exam has 2 parts (plus cheat-sheet). You have 2.5 hours. No books, notes, cell phones, or other external materials are allowed.

Part I (52 points)

Answer 4 of the following 5 questions. Give short answers, sketching the proof or giving a convincing justification in 2-5 sentences (even for true/false questions). You may use without proof theorems stated in class, provided you state the appropriate theorem that you are using. As usual, assume n (or |V|) is large enough.

A. Markov's inequality states that for every non-negative random variable X,

 $\forall t > 0, \qquad \Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}.$

Does it hold even if X is not restricted to be non-negative?

- B. Let G be a graph drawn from the distribution $G_{n,p}$ for p = 8/n. Is it true that $\Pr[G \text{ is connected}] \ge 1/2$?
- C. Fix an $n \times n$ matrix A with 0-1 entries that has full rank, let x be chosen uniformly at random from $\{0,1\}^n$, and set y = Ax, where all the operations (the rank computation and the product Ax) are over GF[2].

Is it true that y_1, \ldots, y_n (the *n* coordinates of *y*) are fully independent bits?

D. Let q and x_1, \ldots, x_{n^2} be all random vectors in $\{0, 1\}^n$.

Is it true that with probability 90% or more, q has a *unique* 1.1-approximate nearest neighbor among x_1, \ldots, x_{n^2} (under Hamming distance)?

E. Let G = (V, E, w) be an undirected graph with edge weights $w : E \to \mathbb{R}_+$, and let G' = (V, E', w') be a $(1 + \varepsilon)$ -cut-sparsifier of G for $\varepsilon \in (0, 1)$.

Is it true that for every partition $V = V_1 \cup \cdots \cup V_k$, the total weight of edges connecting different V_i 's is the same in G' as in G up to factor $1 \pm \varepsilon$, formally, $\sum_{i < j} w'(V_i, V_j) \in (1 \pm \varepsilon) \sum_{i < j} w(V_i, V_j)$?

Part II (48 points)

Answer 2 of the following 3 questions.

1. Suppose Alice's input is $x \in \{0,1\}^n$ and Bob's input is $y \in \{0,1\}^n$, and the goal is to determine whether x = y. Design a non-trivial protocol where each of them sends a short message a Referee which outputs an answer, assuming each party has private randomness, but no shared randomness.

Hint: You may use the fact that there are "good" error correcting codes $C : \{0, 1\}^n \to \{0, 1\}^m$, which means that m = O(n) and for all $x_1 \neq x_2 \in \{0, 1\}^n$ the Hamming distance between $C(x_1)$ and $C(x_2)$ is $\Omega(n)$.

2. Suppose the inputs of Alice and Bob are sets E_A and E_B , respectively, of undirected edges on the same vertex set V = [n]. It is guaranteed that both $|E_A \setminus E_B|$ and $|E_B \setminus E_A|$ are at most $k := n^{1/3}$.

Design a randomized protocol where each of them sends a short message a Referee, whose goal is to output the precise symmetric difference $E_A \Delta E_B$ (e.g., not just most of the edges in this set). Assume the parties have access to shared randomness.

Analyze the message-size and success probability of your protocol.

3. Let G = (V, E) be an undirected graph on n vertices, and denote the maximum hitting time in G by $H := \max\{h_{u,v} : u, v \in V\}$. Prove that with probability at least 3/4, a random walk of length $O(H \log n)$ (starting at some fixed $s \in V$) visits all the vertices of the graph.

Hint: "Break" the walk into phases of length 2H.

Good Luck.

Cheat Sheet

Chebychev's inequality. Let X be a random variable with finite variance $\sigma^2 > 0$. Then

$$\forall t \ge 1$$
, $\Pr\left[|X - \mathbb{E}X| \ge t\sigma\right] \le \frac{1}{t^2}$.

Chernoff-Hoeffding bound. Let $X = \sum_{i \in [n]} X_i$, where $X_i \in [0, 1]$ for $i \in [n]$ are independently distributed random variables. Then

$\forall t > 0,$	$\Pr[X - \mathbb{E}[X] \ge t] \le 2e^{-2t^2/n}.$
$\forall 0<\varepsilon\leq 1,$	$\Pr[X \le (1 - \varepsilon)\mathbb{E}[X]] \le e^{-\varepsilon^2 \mathbb{E}[X]/2}.$
$\forall 0<\varepsilon\leq 1,$	$\Pr[X \ge (1 + \varepsilon)\mathbb{E}[X]] \le e^{-\varepsilon^2 \mathbb{E}[X]/3}.$
$\forall t \ge 2e\mathbb{E}[X],$	$\Pr[X \ge t] \le 2^{-t}.$

Azuma's inequality. Let X_0, X_1, \ldots, X_m be a Martingale such that $|X_{i+1} - X_i| \leq 1$ for all $0 \leq i < m$. Then

$$\forall t > 0, \qquad \Pr\left[|X_m - X_0| \ge t\sqrt{m}\right] \le 2e^{-t^2/2}.$$

THE END.