Randomized Algorithms 2015A - Final Exam

Robert Krauthgamer and Moni Naor

February 24, 2015

General instructions. The exam has 2 parts (plus cheat-sheet). You have 2.5 hours. No books, notes, cell phones, or other external materials are allowed.

Part I (52 points)

Answer 4 of the following 5 questions. Give short answers, sketching the proof or giving a convincing justification in 2-5 sentences (even for true/false questions). You may use without proof theorems stated in class, provided you state the appropriate theorem that you are using. As usual, assume n (or $|V|$) is large enough.
A. Markov's inequality states that for every non-negative random variable X,

$$
\forall t>0, \quad \operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}
$$

Does it hold even if X is not restricted to be non-negative?
B. Let G be a graph drawn from the distribution $G_{n, p}$ for $p=8 / n$.

Is it true that $\operatorname{Pr}[G$ is connected $] \geq 1 / 2$?
C. Fix an $n \times n$ matrix A with $0-1$ entries that has full rank, let x be chosen uniformly at random from $\{0,1\}^{n}$, and set $y=A x$, where all the operations (the rank computation and the product $A x)$ are over GF[2].
Is it true that y_{1}, \ldots, y_{n} (the n coordinates of y) are fully independent bits?
D. Let q and $x_{1}, \ldots, x_{n^{2}}$ be all random vectors in $\{0,1\}^{n}$.

Is it true that with probability 90% or more, q has a unique 1.1-approximate nearest neighbor among $x_{1}, \ldots, x_{n^{2}}$ (under Hamming distance)?
E. Let $G=(V, E, w)$ be an undirected graph with edge weights $w: E \rightarrow \mathbb{R}_{+}$, and let $G^{\prime}=$ $\left(V, E^{\prime}, w^{\prime}\right)$ be a $(1+\varepsilon)$-cut-sparsifier of G for $\varepsilon \in(0,1)$.
Is it true that for every partition $V=V_{1} \cup \cdots \cup V_{k}$, the total weight of edges connecting different V_{i} 's is the same in G^{\prime} as in G up to factor $1 \pm \varepsilon$, formally, $\sum_{i<j} w^{\prime}\left(V_{i}, V_{j}\right) \in(1 \pm$ ع) $\sum_{i<j} w\left(V_{i}, V_{j}\right)$?

Part II (48 points)

Answer 2 of the following 3 questions.

1. Suppose Alice's input is $x \in\{0,1\}^{n}$ and Bob's input is $y \in\{0,1\}^{n}$, and the goal is to determine whether $x=y$. Design a non-trivial protocol where each of them sends a short message a Referee which outputs an answer, assuming each party has private randomness, but no shared randomness.
Hint: You may use the fact that there are "good" error correcting codes $C:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, which means that $m=O(n)$ and for all $x_{1} \neq x_{2} \in\{0,1\}^{n}$ the Hamming distance between $C\left(x_{1}\right)$ and $C\left(x_{2}\right)$ is $\Omega(n)$.
2. Suppose the inputs of Alice and Bob are sets E_{A} and E_{B}, respectively, of undirected edges on the same vertex set $V=[n]$. It is guaranteed that both $\left|E_{A} \backslash E_{B}\right|$ and $\left|E_{B} \backslash E_{A}\right|$ are at most $k:=n^{1 / 3}$.
Design a randomized protocol where each of them sends a short message a Referee, whose goal is to output the precise symmetric difference $E_{A} \Delta E_{B}$ (e.g., not just most of the edges in this set). Assume the parties have access to shared randomness.
Analyze the message-size and success probability of your protocol.
3. Let $G=(V, E)$ be an undirected graph on n vertices, and denote the maximum hitting time in G by $H:=\max \left\{h_{u, v}: u, v \in V\right\}$. Prove that with probability at least $3 / 4$, a random walk of length $O(H \log n)$ (starting at some fixed $s \in V)$ visits all the vertices of the graph.
Hint: "Break" the walk into phases of length $2 H$.

Good Luck.

Cheat Sheet

Chebychev's inequality. Let X be a random variable with finite variance $\sigma^{2}>0$. Then

$$
\forall t \geq 1, \quad \operatorname{Pr}[|X-\mathbb{E} X| \geq t \sigma] \leq \frac{1}{t^{2}}
$$

Chernoff-Hoeffding bound. Let $X=\sum_{i \in[n]} X_{i}$, where $X_{i} \in[0,1]$ for $i \in[n]$ are independently distributed random variables. Then

$$
\begin{array}{cc}
\forall t>0, & \operatorname{Pr}[|X-\mathbb{E}[X]| \geq t] \leq 2 e^{-2 t^{2} / n} \\
\forall 0<\varepsilon \leq 1, & \operatorname{Pr}[X \leq(1-\varepsilon) \mathbb{E}[X]] \leq e^{-\varepsilon^{2} \mathbb{E}[X] / 2} \\
\forall 0<\varepsilon \leq 1, & \operatorname{Pr}[X \geq(1+\varepsilon) \mathbb{E}[X]] \leq e^{-\varepsilon^{2} \mathbb{E}[X] / 3} \\
\forall t \geq 2 e \mathbb{E}[X], & \operatorname{Pr}[X \geq t] \leq 2^{-t} .
\end{array}
$$

Azuma's inequality. Let $X_{0}, X_{1}, \ldots, X_{m}$ be a Martingale such that $\left|X_{i+1}-X_{i}\right| \leq 1$ for all $0 \leq i<m$. Then

$$
\forall t>0, \quad \operatorname{Pr}\left[\left|X_{m}-X_{0}\right| \geq t \sqrt{m}\right] \leq 2 e^{-t^{2} / 2}
$$

THE END.

