Randomized Algorithms 2015A – Problem Set 3

Robert Krauthgamer and Moni Naor

Due: January 18, 2015

1. Show that the hash function $h_r : \{0,1\}^n \to \{0,1\}$ mapping $x \mapsto \sum_{i=1}^n x_i r_i \pmod{2}$, where $\vec{r} \in \{0,1\}^n$ is chosen uniformly at random, is a good one-bit sketch for equality testing.

Hint: Analyze $\Pr_r[h_r(x) = h_r(y)]$ when x = y and when $x \neq y$.

- 2. Suppose the set of possible inputs (of size n) is partitioned into three sets called CLOSE, FAR, and UNKNOWN. Suppose that the randomized algorithm A has advantage $\varepsilon > 0$ in distinguishing CLOSE from FAR inputs in the following sense: there is $p = p_{\text{close}} > 0$ such that
 - for every input z in CLOSE, $\Pr[A(z) = 1] \le p_{\text{close}}$; and
 - for every input z in FAR, $\Pr[A(z) = 1] \ge p_{\text{close}} + \varepsilon$.

Design algorithm *B* that uses $m = O(\frac{1}{\varepsilon^2} \log \frac{1}{\delta})$ independent repetitions of *A* to distinguish between CLOSE and FAR inputs with success probability (in each of the cases) at least $1 - \delta$. Hint: Think first about $\delta = 1/4$.

3. Given as input *n* points $x_1, \ldots, x_n \in [m]^d$ for m = d = n/10, show how to determine, within $1 + \varepsilon$ approximation, the radius of the point set under ℓ_2 -distance, defined as $r = \min_{i \in [n]} \max_{j \in [n]} \|x_i - x_j\|$.

You algorithm should be faster than the naive computation that runs in time $O(n^2d)$, which in our case is $O(n^3)$.

Extra credit:

4. (a) Let $x_1, \ldots, x_n \in \mathbb{R}^d$ and fix a linear map $L : \mathbb{R}^d \to \mathbb{R}^t$ that preserves all pairwise distances within factor $1 + \varepsilon$ (i.e., $||L(x_i - x_j)|| \in (1 \pm \varepsilon) ||x_i - x_j||$ for all i, j). Prove that the area of every right-angled triangle $\{x_i, x_j, x_k\}$ (i.e., whenever the inner-product $\langle x_j - x_i, x_k - x_i \rangle = 0$) is preserved by L within factor $1 + O(\varepsilon)$.

Hint: Denote the triangle's sidelengths by $v = x_j - x_i$ and $w = x_k - x_i$, and let \hat{v}, \hat{w} be defined similarly for the image triangle. Then prove that $|\langle \hat{v}, \hat{w} \rangle| \leq O(\varepsilon) \cdot ||\hat{v}|| \cdot ||\hat{w}||$.

(b) Show there is a random map $L : \mathbb{R}^d \to \mathbb{R}^t$ for $t = O(\varepsilon^{-2} \log n)$, such that for every n points $y_1, \ldots, y_n \in \mathbb{R}^d$, with high probability, L preserves the area of every triangle $\{y_i, y_j, y_k\}$ within factor $1 + \varepsilon$.

Hint: For every triangle, find an additional point that "breaks" the triangle into two rightangle triangles. Augment the point set with these $O(n^3)$ additional points, and apply the JL-lemma on this augmented point set.