Randomized Algorithms 2015A - Problem Set 3

Robert Krauthgamer and Moni Naor

Due: January 18, 2015

1. Show that the hash function $h_{r}:\{0,1\}^{n} \rightarrow\{0,1\}$ mapping $x \mapsto \sum_{i=1}^{n} x_{i} r_{i}(\bmod 2)$, where $\vec{r} \in\{0,1\}^{n}$ is chosen uniformly at random, is a good one-bit sketch for equality testing.
Hint: Analyze $\operatorname{Pr}_{r}\left[h_{r}(x)=h_{r}(y)\right]$ when $x=y$ and when $x \neq y$.
2. Suppose the set of possible inputs (of size n) is partitioned into three sets called CLOSE, FAR, and UNKNOWN. Suppose that the randomized algorithm A has advantage $\varepsilon>0$ in distinguishing CLOSE from FAR inputs in the following sense: there is $p=p_{\text {close }}>0$ such that

- for every input z in CLOSE, $\operatorname{Pr}[A(z)=1] \leq p_{\text {close }}$; and
- for every input z in $\operatorname{FAR}, \operatorname{Pr}[A(z)=1] \geq p_{\text {close }}+\varepsilon$.

Design algorithm B that uses $m=O\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\delta}\right)$ independent repetitions of A to distinguish between CLOSE and FAR inputs with success probability (in each of the cases) at least $1-\delta$.
Hint: Think first about $\delta=1 / 4$.
3. Given as input n points $x_{1}, \ldots, x_{n} \in[m]^{d}$ for $m=d=n / 10$, show how to determine, within $1+\varepsilon$ approximation, the radius of the point set under ℓ_{2}-distance, defined as $r=$ $\min _{i \in[n]} \max _{j \in[n]}\left\|x_{i}-x_{j}\right\|$.
You algorithm should be faster than the naive computation that runs in time $O\left(n^{2} d\right)$, which in our case is $O\left(n^{3}\right)$.

Extra credit:

4. (a) Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ and fix a linear map $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{t}$ that preserves all pairwise distances within factor $1+\varepsilon$ (i.e., $\left\|L\left(x_{i}-x_{j}\right)\right\| \in(1 \pm \varepsilon)\left\|x_{i}-x_{j}\right\|$ for all $\left.i, j\right)$. Prove that the area of every right-angled triangle $\left\{x_{i}, x_{j}, x_{k}\right\}$ (i.e., whenever the inner-product $\left\langle x_{j}-x_{i}, x_{k}-x_{i}\right\rangle=0$) is preserved by L within factor $1+O(\varepsilon)$.
Hint: Denote the triangle's sidelengths by $v=x_{j}-x_{i}$ and $w=x_{k}-x_{i}$, and let \hat{v}, \hat{w} be defined similarly for the image triangle. Then prove that $|\langle\hat{v}, \hat{w}\rangle| \leq O(\varepsilon) \cdot\|\hat{v}\| \cdot\|\hat{w}\|$.
(b) Show there is a random map $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{t}$ for $t=O\left(\varepsilon^{-2} \log n\right)$, such that for every n points $y_{1}, \ldots, y_{n} \in \mathbb{R}^{d}$, with high probability, L preserves the area of every triangle $\left\{y_{i}, y_{j}, y_{k}\right\}$ within factor $1+\varepsilon$.

Hint: For every triangle, find an additional point that "breaks" the triangle into two rightangle triangles. Augment the point set with these $O\left(n^{3}\right)$ additional points, and apply the JL-lemma on this augmented point set.

