# Sublinear Time and Space Algorithms 2016B – Lecture 2 Distinct Elements, Point Queries and Hash Functions\*

## Robert Krauthgamer

# 1 Distinct Elements

**Problem Definition:** Let  $x \in \mathbb{R}^n$  be the frequency vector of the input stream, and let  $||x||_0 = |\{i \in [n] : x_i > 0\}|$  be the number of distinct elements in the stream. It's also called the  $F_0$ -moment of  $\sigma$ .

Naive algorithms: Storage O(n) (a bit for each possible item) or  $O(m \log n)$  (list of seen items) bits.

## Algorithm FM [Flajolet and Martin, 1985]:

It employs a "hash" function  $h:[n] \to [0,1]$  where each h(i) has an independent uniform distribution on [0,1]. (This is an "idealized" description, because even though we can generate n truly random bits, we cannot store and re-use them.)

Idea: We will have exactly  $d^* = ||x||_0$  distinct hashes, and since they are random, by symmetry their minimum should be at  $1/(d^* + 1)$ .

- 1. Init: z = 1
- 2. When item  $i \in [n]$  is seen, update  $z = \min\{z, h(i)\}$
- 3. Output: 1/z 1

Storage requirement: O(1) words (not including randomness); we will discuss implementation issues

Denote by  $d^* := ||x||_0$  the true value, and let Z denote the final value of z (to emphasize it is a random variable).

**Lemma 1:**  $\mathbb{E}[Z] = 1/(d^* + 1)$ .

Note: This is the expectation of Z and not of its inverse 1/Z (as used in the output).

**Proof:** Formally, we use a trick to avoid the integral calculation (which is actually straightfor-

<sup>\*</sup>These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

ward). Choose an additional random value X uniformly from [0,1] (for sake of analysis only), then by the law of total expectation

$$\mathbb{E}[Z] = \underset{Z}{\mathbb{E}}[\Pr_{X}[X < Z \mid Z]] = \underset{Z}{\mathbb{E}}[\underset{X}{\mathbb{E}}[\mathbb{1}_{\{X < Z\}} \mid Z]] = \mathbb{E}[\mathbb{1}_{\{X < Z\}}] = 1/(\operatorname{d}^* + 1).$$

**Lemma 2:**  $\mathbb{E}[Z^2] = \frac{2}{(d+1)(d+2)}$  and thus  $\operatorname{Var}[Z] \leq (\mathbb{E}[Z])^2$ .

**Exer:** Prove this lemma using the above trick with two new random values (and/or prove both by calculating the integral).

# Algorithm FM+:

- 1. Run  $k = O(1/\varepsilon^2)$  independent copies of algorithm FM, keeping in memory  $Z_1, \ldots, Z_k$  (and functions  $h^1, \ldots, h^k$ )
- 2. Output:  $1/\bar{Z} 1$  where  $\bar{Z} = \frac{1}{k} \sum_{i=1}^{k} Z_i$

As before, averaging reduces the standard deviation by factor  $\sqrt{k}$ , and then by Chebyshev's inequality, WHP  $\bar{Z} \in d^* \pm O(d^*/\sqrt{k}) = d^* \pm \varepsilon d^*$ .

Storage requirement: O(k) words (not including randomness); we will discuss implementation issues later.

**Remark:** The storage can be improved similarly to the probabilistic counting. It suffices to store a  $(1 + \varepsilon)$ -approximation of z, which can reduce the number of bits from  $O(\log n)$  (in a "typical" implementation of the real-valued hashes) to  $O(\log \log n)$ . A particularly efficient 2-approximation is to store the number of zeros in the beginning of z's binary representation.

**Remark:** Notice this algorithm does not work under deletions.

# 2 Alternative algorithm for Distinct Elements

### Algorithm Bottom k [Bar Yossef, Jayram, Kumar, Sivakumar, and Trevisan, 2002]:

Idea: Use only one hash function, and store the k smallest values seen.

- 1. Init:  $z_1 = \cdots = z_k = 1$
- 2. When item  $i \in [n]$  is seen, update  $z_1 < \cdots < z_k$  to be the k smallest distinct values among  $\{z_1, \ldots, z_k, h(i)\}$
- 3. Output:  $X := k/z_k$

Storage requirement: Again, O(k) words (not including randomness); we will discuss implementation issues later.

Remark: Notice the output will not make sense if  $k > d^*$ , because  $z_k$  will maintain its initial value of 1. Figure out where this is needed in the analysis.

**Lemma 3:** For suitable  $k = O(1/\varepsilon^2)$ ,

$$\Pr[X > (1 + \varepsilon) d^*] \le 0.05,$$

$$\Pr[X < (1 - \varepsilon) d^*] \le 0.05.$$

Thus,  $X \in (1 \pm \varepsilon) d^*$  with probability  $\geq 90\%$ .

Intuition: The event  $X = k/z_k > (1+\varepsilon) \,\mathrm{d}^*$  is equivalent to  $z_k < \frac{k}{(1+\varepsilon) \,\mathrm{d}^*}$ , which means that at least k hashes are smaller than some threshold, while each of the  $\mathrm{d}^*$  distinct hashes seen meets this threshold independently with probability  $\frac{k}{(1+\varepsilon) \,\mathrm{d}^*}$ , hence we expect only  $\frac{k}{1+\varepsilon}$  hashes to meet the threshold. If we set  $k \geq 1/\varepsilon^2$ , then the standard deviation is  $\sqrt{k} \leq \varepsilon k$ , and we can use Chebyshev's inequality.

Exer: Prove the above lemma.

# 3 $\ell_1$ Point Query via CountMin

**Problem Definition:** Let  $x \in \mathbb{R}^n$  be the frequency vector of the input stream, and let  $||x||_p = (\sum_i |x_i|^p)^{1/p}$  be its  $\ell_p$ -norm. Let  $\alpha \in (0,1)$  and p > 0 be parameters known in advance.

The goal is to estimate every coordinate with additive error, namely, given query  $i \in [n]$ , report  $\tilde{x}_i$  such that WHP

$$\tilde{x}_i \in x_i \pm \alpha ||x||_p$$
.

Observe:  $||x||_1 \ge ||x||_2 \ge ... \ge ||x||_{\infty}$ , hence higher norms (larger p) give better accuracy. We will see an algorithm for  $\ell_1$ , which is the easiest.

Exer: Show that the  $\ell_1$  and  $\ell_2$  norms differ by at most a factor of  $\sqrt{n}$ , and that this is tight. Do the same for  $\ell_2$  and  $\ell_{\infty}$ .

It is not difficult to see that  $\ell_{\infty}$  point query is hard. For instance, with  $\alpha = 1/2$  we could recover an arbitrary binary vector  $x \in \{0,1\}^n$ , which (at least intuitively) requires  $\Omega(n)$  bits to store.

**Theorem 4 [Cormode-Muthukrishnan, 2005]:** There is a streaming algorithm for  $\ell_1$  point queries that uses a (linear) sketch of  $O(\alpha^{-1} \log n)$  memory words to achieve accuracy  $\alpha$  with success probability  $1 - 1/n^2$ .

We will initially assume all  $x_i \geq 0$ .

#### Algorithm CountMin:

(Assume all  $x_i \geq 0$ .)

- 1. Init: Set  $w = 4/\alpha$  and choose a random hash function  $h: [n] \to [w]$ .
- 2. Update: Maintain table/vector  $S = [S_1, \dots, S_w]$  where  $S_j = \sum_{i:h(i)=j} x_i$ .
- 3. Output: To estimate  $x_i$  return  $\tilde{x}_i = S_{h(i)}$ .

The update step can indeed be implemented in a streaming fashion: When item i arrives, we need to update  $x \leftarrow x + e_i$ . This update is easy because the sketch is a linear map  $S : \mathbb{R}^n \to \mathbb{R}^w$  (observe that  $S_j = \sum_i \mathbb{1}_{\{h(i)=j\}} x_i$ ), and thus  $S(x+e_i) = S(x) + S(e_i)$ .

We call S a sketch to emphasize it is a succinct version of the input.

Analysis (correctness): We saw in class that  $\tilde{x}_i \geq x_i$  and  $\Pr[\tilde{x}_i \geq x_i + \alpha ||x||_1] \leq 1/4$ .

## Algorithm CountMin+:

- 1. Run  $t = \log n$  independent copies of algorithm CountMin, keeping in memory the vectors  $S^1, \ldots, S^t$  (and functions  $h^1, \ldots, h^t$ )
- 2. Output: the minimum of all estimates  $\hat{x}_i = \min_l S_{h^l(i)}^l$

Analysis (correctness): As before,  $\hat{x}_i \geq x_i$  and

$$\Pr[\hat{x}_i > x_i + \alpha ||x||_1] \le (1/4)^t = 1/n^2.$$

By a union bound, with probability at least 1-1/n, for all  $i \in [n]$  we will have  $x_i \leq \hat{x}_i \leq x_i + \alpha ||x||_1$ .

**Space requirement:**  $O(\alpha^{-1} \log n)$  words (for success probability  $1 - 1/n^2$ ), without counting memory used to represent/store the hash functions.

### General x (allowing negative entries):

Algorithm Count Min actually extends to general x that might be negative, and achieves the guarantee

$$\Pr[\tilde{x}_i \in x_i \pm \alpha || x ||_1] \le 1/4.$$

Exer: complete the proof.

But now to amplify the success probability, we use median instead of minimum.

Chernoff-Hoeffding concentration bounds: Let  $X = \sum_{i \in [n]} X_i$  where  $X_i \in [0, 1]$  for  $i \in [n]$  are independently distributed random variables. Then

$$\begin{split} \forall t > 0, & \Pr[|X - \mathbb{E}[X]| \geq t] \leq 2e^{-2t^2/n}. \\ \forall 0 < \varepsilon \leq 1, & \Pr[X \leq (1 - \varepsilon) \, \mathbb{E}[X]] \leq e^{-\varepsilon^2 \, \mathbb{E}[X]/2}. \\ \forall 0 < \varepsilon \leq 1, & \Pr[X \geq (1 + \varepsilon) \, \mathbb{E}[X]] \leq e^{-\varepsilon^2 \, \mathbb{E}[X]/3}. \\ \forall t \geq 2e \, \mathbb{E}[X], & \Pr[X \geq t] \leq 2^{-t}. \end{split}$$

# Algorithm CountMin++:

- 1. Run  $k = O(\log n)$  independent copies of algorithm CountMin, keeping in memory the vectors  $S^1, \ldots, S^k$  (and functions  $h^1, \ldots, h^k$ )
- 2. Output: To estimate  $x_i$  report the median of all basic estimates  $\hat{x}_i = \text{median}\{S_{h^l(i)}^l: l \in [k]\}$

**Exer:** Prove that

$$\Pr[\hat{x}_i \in x_i \pm \alpha || x ||_1] \le 1/n^2.$$

Hint: Define an indicator  $Y_j$  for the event that copy  $j \in [k]$  succeeds, then use one of the concentration bounds.

**Exer:** Use these concentration bounds to amplify the success probability of the algorithms we saw for Distinct Elements and for Probabilistic Counting (say from constant to  $1 - 1/n^2$ ).

Hint: use independent repetitions + median.

# 4 Hash Functions

Recall that two (discrete) random variables X, Y are independent if

$$\forall x, y$$
  $\Pr[X = x, Y = y] = \Pr[X = x] \cdot \Pr[Y = y].$ 

This is equivalent to saying that the conditioned random variable X|Y has exactly the same distribution as X. In particular, it implies  $\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$ .

**Pairwise independent random variables:** A collection of random variables  $X_1, \ldots, X_n$  is called *pairwise independent* if for all  $i \neq j \in [n]$ , the variables  $X_i$  and  $X_j$  are independent.

Example: Let  $X, Y \in \{0, 1\}$  be random and independent bits, and let  $Z = X \oplus Y$ . Then X, Y, Z are clearly not mutually (fully) independent, but they are pairwise independent.

Observation: When  $X_1, \ldots, X_n$  are pairwise independent, the variance  $Var(\sum_i X_i)$  is exactly the same as if they were fully independent, because

$$Var(\sum_{i} X_{i}) = \mathbb{E}[(\sum_{i} X_{i})^{2}] - (\mathbb{E}[\sum_{i} X_{i}])^{2} = \sum_{i,j} \mathbb{E}[X_{i}X_{j}] - (\sum_{i} \mathbb{E}[X_{i}])^{2}.$$

A different way to see it, is via the following well-known (and easy) fact: If  $X_1, \ldots, X_n$  are pairwise independent (and have finite variance), then  $\operatorname{Var}(\sum_i X_i) = \sum_i \operatorname{Var}(X_i)$ .

**Pairwise independent hash family:** A family H of hash functions  $h : [n] \to [M]$  is called pairwise independent if for all  $i \neq j \in [n]$ ,

$$\forall x, y \qquad \Pr_{h \in H}[h(i) = x, h(j) = y] = \Pr[h(i) = x] \Pr[h(j) = y].$$

A common scenario is that each h(i) is uniformly distributed over [M].

**Universal hashing:** A family H of hash functions  $h : [n] \to [M]$  is called 2-universal if for all  $i \neq j \in [n]$ ,

$$\forall x,y \qquad \Pr_{h \in H}[h(i) = x, h(j) = y] \le 1/M.$$

Observe that 2-universality is a weaker requirement that pairwise independence, but it suffices for many algorithms.

Construction of pairwise independent hashing:

Assume  $M \ge n$  and that M is a prime number (if not, we can pick a larger M that is a prime). Pick random  $p, q \in \{0, 1, 2, ..., M - 1\} = [M]$  and set accordingly  $h_{p,q}(i) = pi + q \pmod{M}$ .

The family  $H = \{h_{p,q} : p, q\}$  is pairwise independent because for all  $i \neq j$  and all x, y, y

$$\Pr_{h\in H}[h(i)\equiv x,h(j)\equiv y]=\Pr_{p,q}\left[\left(\begin{smallmatrix}i&1\\j&1\end{smallmatrix}\right)\left(\begin{smallmatrix}p\\q\end{smallmatrix}\right)\equiv \left(\begin{smallmatrix}x\\y\end{smallmatrix}\right)\right]=\Pr_{p,q}\left[\left(\begin{smallmatrix}p\\q\end{smallmatrix}\right)\equiv \left(\begin{smallmatrix}i&1\\j&1\end{smallmatrix}\right)^{-1}\left(\begin{smallmatrix}x\\y\end{smallmatrix}\right)\right]=\frac{1}{M^2},$$

where we relied on the above matrix being invertible.

Storing a function  $h_{p,q}$  from this family can be done by storing p,q, which requires  $\log |H| = O(\log M)$  bits. In general,  $\log |H|$  bits suffice to store an index of  $h \in H$ .

**Exer:** Show that the correctness of algorithm CountMin (for  $\ell_1$  point query) extends to using a universal hash function, and analyze how much additional storage the hash function requires.

**Exer:** Show that the correctness of algorithm Bottom k (for Distinct Elements) can be extended to using a pairwise independent hash function  $h:[n] \to [n^3]$  (instead of continuous range [0,1]), and analyze how much additional storage the hash function requires.

Hint: Our analysis used events of the form  $\{h(i) < threshold\}$ , and relied on independence for every pair h(i), h(j).