Sublinear Time and Space Algorithms 2016B - Lecture 2 Distinct Elements, Point Queries and Hash Functions*

Robert Krauthgamer

1 Distinct Elements

Problem Definition: Let $x \in \mathbb{R}^{n}$ be the frequency vector of the input stream, and let $\|x\|_{0}=$ $\left|\left\{i \in[n]: x_{i}>0\right\}\right|$ be the number of distinct elements in the stream. It's also called the F_{0}-moment of σ.

Naive algorithms: Storage $O(n)$ (a bit for each possible item) or $O(m \log n)$ (list of seen items) bits.

Algorithm FM [Flajolet and Martin, 1985]:

It employs a "hash" function $h:[n] \rightarrow[0,1]$ where each $h(i)$ has an independent uniform distribution on $[0,1]$. (This is an "idealized" description, because even though we can generate n truly random bits, we cannot store and re-use them.)
Idea: We will have exactly $\mathrm{d}^{*}=\|x\|_{0}$ distinct hashes, and since they are random, by symmetry their minimum should be at $1 /\left(\mathrm{d}^{*}+1\right)$.

1. Init: $z=1$
2. When item $i \in[n]$ is seen, update $z=\min \{z, h(i)\}$
3. Output: $1 / z-1$

Storage requirement: $O(1)$ words (not including randomness); we will discuss implementation issues later.
Denote by $\mathrm{d}^{*}:=\|x\|_{0}$ the true value, and let Z denote the final value of z (to emphasize it is a random variable).

Lemma 1: $\mathbb{E}[Z]=1 /\left(\mathrm{d}^{*}+1\right)$.
Note: This is the expectation of Z and not of its inverse $1 / Z$ (as used in the output).
Proof: Formally, we use a trick to avoid the integral calculation (which is actually straightfor-

[^0]ward). Choose an additional random value X uniformly from $[0,1]$ (for sake of analysis only), then by the law of total expectation
$$
\mathbb{E}[Z]=\underset{Z}{\mathbb{E}}[\operatorname{Pr}[X<Z \mid Z]]=\underset{Z}{\mathbb{E}}\left[\underset{X}{\mathbb{E}}\left[\mathbb{1}_{\{X<Z\}} \mid Z\right]\right]=\mathbb{E}\left[\mathbb{1}_{\{X<Z\}}\right]=1 /\left(\mathrm{d}^{*}+1\right) .
$$

Lemma 2: $\mathbb{E}\left[Z^{2}\right]=\frac{2}{(d+1)(d+2)}$ and thus $\operatorname{Var}[Z] \leq(\mathbb{E}[Z])^{2}$.
Exer: Prove this lemma using the above trick with two new random values (and/or prove both by calculating the integral).

Algorithm FM+:

1. Run $k=O\left(1 / \varepsilon^{2}\right)$ independent copies of algorithm FM, keeping in memory Z_{1}, \ldots, Z_{k} (and functions $\left.h^{1}, \ldots, h^{k}\right)$
2. Output: $1 / \bar{Z}-1$ where $\bar{Z}=\frac{1}{k} \sum_{i=1}^{k} Z_{i}$

As before, averaging reduces the standard deviation by factor \sqrt{k}, and then by Chebyshev's inequality, WHP $\bar{Z} \in \mathrm{~d}^{*} \pm O\left(\mathrm{~d}^{*} / \sqrt{k}\right)=\mathrm{d}^{*} \pm \varepsilon \mathrm{d}^{*}$.
Storage requirement: $O(k)$ words (not including randomness); we will discuss implementation issues later.

Remark: The storage can be improved similarly to the probabilistic counting. It suffices to store a $(1+\varepsilon)$-approximation of z, which can reduce the number of bits from $O(\log n)$ (in a "typical" implementation of the real-valued hashes) to $O(\log \log n)$. A particularly efficient 2-approximation is to store the number of zeros in the beginning of z^{\prime} s binary representation.

Remark: Notice this algorithm does not work under deletions.

2 Alternative algorithm for Distinct Elements

Algorithm Bottom k [Bar Yossef, Jayram, Kumar, Sivakumar, and Trevisan, 2002]:

Idea: Use only one hash function, and store the k smallest values seen.

1. Init: $z_{1}=\cdots=z_{k}=1$
2. When item $i \in[n]$ is seen, update $z_{1}<\cdots<z_{k}$ to be the k smallest distinct values among $\left\{z_{1}, \ldots, z_{k}, h(i)\right\}$
3. Output: $X:=k / z_{k}$

Storage requirement: Again, $O(k)$ words (not including randomness); we will discuss implementation issues later.

Remark: Notice the output will not make sense if $k>d^{*}$, because z_{k} will maintain its initial value of 1. Figure out where this is needed in the analysis.

Lemma 3: For suitable $k=O\left(1 / \varepsilon^{2}\right)$,

$$
\begin{aligned}
& \operatorname{Pr}\left[X>(1+\varepsilon) \mathrm{d}^{*}\right] \leq 0.05, \\
& \operatorname{Pr}\left[X<(1-\varepsilon) \mathrm{d}^{*}\right] \leq 0.05 .
\end{aligned}
$$

Thus, $X \in(1 \pm \varepsilon) \mathrm{d}^{*}$ with probability $\geq 90 \%$.
Intuition: The event $X=k / z_{k}>(1+\varepsilon) \mathrm{d}^{*}$ is equivalent to $z_{k}<\frac{k}{(1+\varepsilon) \mathrm{d}^{*}}$, which means that at least k hashes are smaller than some threshold, while each of the d^{*} distinct hashes seen meets this threshold independently with probability $\frac{k}{(1+\varepsilon) \mathrm{d}^{*}}$, hence we expect only $\frac{k}{1+\varepsilon}$ hashes to meet the threshold. If we set $k \geq 1 / \varepsilon^{2}$, then the standard deviation is $\sqrt{k} \leq \varepsilon k$, and we can use Chebyshev's inequality.

Exer: Prove the above lemma.

$3 \ell_{1}$ Point Query via CountMin

Problem Definition: Let $x \in \mathbb{R}^{n}$ be the frequency vector of the input stream, and let $\|x\|_{p}=$ $\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$ be its ℓ_{p}-norm. Let $\alpha \in(0,1)$ and $p>0$ be parameters known in advance.
The goal is to estimate every coordinate with additive error, namely, given query $i \in[n]$, report \tilde{x}_{i} such that WHP

$$
\tilde{x}_{i} \in x_{i} \pm \alpha\|x\|_{p} .
$$

Observe: $\|x\|_{1} \geq\|x\|_{2} \geq \ldots \geq\|x\|_{\infty}$, hence higher norms (larger p) give better accuracy. We will see an algorithm for ℓ_{1}, which is the easiest.

Exer: Show that the ℓ_{1} and ℓ_{2} norms differ by at most a factor of \sqrt{n}, and that this is tight. Do the same for ℓ_{2} and ℓ_{∞}.

It is not difficult to see that ℓ_{∞} point query is hard. For instance, with $\alpha=1 / 2$ we could recover an arbitrary binary vector $x \in\{0,1\}^{n}$, which (at least intuitively) requires $\Omega(n)$ bits to store.

Theorem 4 [Cormode-Muthukrishnan, 2005]: There is a streaming algorithm for ℓ_{1} point queries that uses a (linear) sketch of $O\left(\alpha^{-1} \log n\right)$ memory words to achieve accuracy α with success probability $1-1 / n^{2}$.
We will initially assume all $x_{i} \geq 0$.

Algorithm CountMin:

(Assume all $x_{i} \geq 0$.)

1. Init: Set $w=4 / \alpha$ and choose a random hash function $h:[n] \rightarrow[w]$.
2. Update: Maintain table/vector $S=\left[S_{1}, \ldots, S_{w}\right]$ where $S_{j}=\sum_{i: h(i)=j} x_{i}$.
3. Output: To estimate x_{i} return $\tilde{x}_{i}=S_{h(i)}$.

The update step can indeed be implemented in a streaming fashion: When item i arrives, we need to update $x \leftarrow x+e_{i}$. This update is easy because the sketch is a linear map $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{w}$ (observe that $\left.S_{j}=\sum_{i} \mathbb{1}_{\{h(i)=j\}} x_{i}\right)$, and thus $S\left(x+e_{i}\right)=S(x)+S\left(e_{i}\right)$.
We call S a sketch to emphasize it is a succinct version of the input.
Analysis (correctness): We saw in class that $\tilde{x}_{i} \geq x_{i}$ and $\operatorname{Pr}\left[\tilde{x}_{i} \geq x_{i}+\alpha\|x\|_{1}\right] \leq 1 / 4$.

Algorithm CountMin+:

1. Run $t=\log n$ independent copies of algorithm CountMin, keeping in memory the vectors S^{1}, \ldots, S^{t} (and functions h^{1}, \ldots, h^{t})
2. Output: the minimum of all estimates $\hat{x}_{i}=\min _{l} S_{h^{l}(i)}^{l}$

Analysis (correctness): As before, $\hat{x}_{i} \geq x_{i}$ and

$$
\operatorname{Pr}\left[\hat{x}_{i}>x_{i}+\alpha\|x\|_{1}\right] \leq(1 / 4)^{t}=1 / n^{2} .
$$

By a union bound, with probability at least $1-1 / n$, for all $i \in[n]$ we will have $x_{i} \leq \hat{x}_{i} \leq x_{i}+\alpha\|x\|_{1}$.
Space requirement: $O\left(\alpha^{-1} \log n\right)$ words (for success probability $\left.1-1 / n^{2}\right)$, without counting memory used to represent/store the hash functions.

General x (allowing negative entries):

Algorithm CountMin actually extends to general x that might be negative, and achieves the guarantee

$$
\operatorname{Pr}\left[\tilde{x}_{i} \in x_{i} \pm \alpha\|x\|_{1}\right] \leq 1 / 4 .
$$

Exer: complete the proof.
But now to amplify the success probability, we use median instead of minimum.
Chernoff-Hoeffding concentration bounds: Let $X=\sum_{i \in[n]} X_{i}$ where $X_{i} \in[0,1]$ for $i \in[n]$ are independently distributed random variables. Then

$$
\begin{array}{rc}
\forall t>0, & \operatorname{Pr}[|X-\mathbb{E}[X]| \geq t] \leq 2 e^{-2 t^{2} / n} . \\
\forall 0<\varepsilon \leq 1, & \operatorname{Pr}[X \leq(1-\varepsilon) \mathbb{E}[X]] \leq e^{-\varepsilon^{2} \mathbb{E}[X] / 2} . \\
\forall 0<\varepsilon \leq 1, & \operatorname{Pr}[X \geq(1+\varepsilon) \mathbb{E}[X]] \leq e^{-\varepsilon^{2} \mathbb{E}[X] / 3} . \\
\forall t \geq 2 e \mathbb{E}[X], & \operatorname{Pr}[X \geq t] \leq 2^{-t} .
\end{array}
$$

Algorithm CountMin++:

1. Run $k=O(\log n)$ independent copies of algorithm CountMin, keeping in memory the vectors S^{1}, \ldots, S^{k} (and functions h^{1}, \ldots, h^{k})
2. Output: To estimate x_{i} report the median of all basic estimates $\hat{x}_{i}=\operatorname{median}\left\{S_{h^{l}(i)}^{l}: l \in[k]\right\}$

Exer: Prove that

$$
\operatorname{Pr}\left[\hat{x}_{i} \in x_{i} \pm \alpha\|x\|_{1}\right] \leq 1 / n^{2}
$$

Hint: Define an indicator Y_{j} for the event that copy $j \in[k]$ succeeds, then use one of the concentration bounds.

Exer: Use these concentration bounds to amplify the success probability of the algorithms we saw for Distinct Elements and for Probabilistic Counting (say from constant to $1-1 / n^{2}$).

Hint: use independent repetitions + median.

4 Hash Functions

Recall that two (discrete) random variables X, Y are independent if

$$
\forall x, y \quad \operatorname{Pr}[X=x, Y=y]=\operatorname{Pr}[X=x] \cdot \operatorname{Pr}[Y=y] .
$$

This is equivalent to saying that the conditioned random variable $X \mid Y$ has exactly the same distribution as X. In particular, it implies $\mathbb{E}[X Y]=\mathbb{E}[X] \cdot \mathbb{E}[Y]$.

Pairwise independent random variables: A collection of random variables X_{1}, \ldots, X_{n} is called pairwise independent if for all $i \neq j \in[n]$, the variables X_{i} and X_{j} are independent.

Example: Let $X, Y \in\{0,1\}$ be random and independent bits, and let $Z=X \oplus Y$. Then X, Y, Z are clearly not mutually (fully) independent, but they are pairwise independent.

Observation: When X_{1}, \ldots, X_{n} are pairwise independent, the variance $\operatorname{Var}\left(\sum_{i} X_{i}\right)$ is exactly the same as if they were fully independent, because

$$
\operatorname{Var}\left(\sum_{i} X_{i}\right)=\mathbb{E}\left[\left(\sum_{i} X_{i}\right)^{2}\right]-\left(\mathbb{E}\left[\sum_{i} X_{i}\right]\right)^{2}=\sum_{i, j} \mathbb{E}\left[X_{i} X_{j}\right]-\left(\sum_{i} \mathbb{E}\left[X_{i}\right]\right)^{2} .
$$

A different way to see it, is via the following well-known (and easy) fact: If X_{1}, \ldots, X_{n} are pairwise independent (and have finite variance), then $\operatorname{Var}\left(\sum_{i} X_{i}\right)=\sum_{i} \operatorname{Var}\left(X_{i}\right)$.

Pairwise independent hash family: A family H of hash functions $h:[n] \rightarrow[M]$ is called pairwise independent if for all $i \neq j \in[n]$,

$$
\forall x, y \quad \operatorname{Pr}_{h \in H}[h(i)=x, h(j)=y]=\operatorname{Pr}[h(i)=x] \operatorname{Pr}[h(j)=y] .
$$

A common scenario is that each $h(i)$ is uniformly distributed over $[M]$.
Universal hashing: A family H of hash functions $h:[n] \rightarrow[M]$ is called 2-universal if for all $i \neq j \in[n]$,

$$
\forall x, y \quad \operatorname{Pr}_{h \in H}[h(i)=x, h(j)=y] \leq 1 / M .
$$

Observe that 2-universality is a weaker requirement that pairwise independence, but it suffices for many algorithms.

Construction of pairwise independent hashing:

Assume $M \geq n$ and that M is a prime number (if not, we can pick a larger M that is a prime). Pick random $p, q \in\{0,1,2, \ldots, M-1\}=[M]$ and set accordingly $h_{p, q}(i)=p i+q(\bmod M)$.

The family $H=\left\{h_{p, q}: p, q\right\}$ is pairwise independent because for all $i \neq j$ and all x, y,

$$
\operatorname{Pr}_{h \in H}[h(i) \equiv x, h(j) \equiv y]=\operatorname{Pr}_{p, q}\left[\left(\begin{array}{c}
i \\
j
\end{array} 1 \begin{array}{l}
1
\end{array}\right)\binom{p}{q} \equiv\binom{x}{y}\right]=\operatorname{Pr}_{p, q}\left[\binom{p}{q} \equiv\left(\begin{array}{ll}
i & 1 \\
j & 1
\end{array}\right)^{-1}\binom{x}{y}\right]=\frac{1}{M^{2}},
$$

where we relied on the above matrix being invertible.
Storing a function $h_{p, q}$ from this family can be done by storing p, q, which requires $\log |H|=$ $O(\log M)$ bits. In general, $\log |H|$ bits suffice to store an index of $h \in H$.

Exer: Show that the correctness of algorithm CountMin (for ℓ_{1} point query) extends to using a universal hash function, and analyze how much additional storage the hash function requires.

Exer: Show that the correctness of algorithm Bottom k (for Distinct Elements) can be extended to using a pairwise independent hash function $h:[n] \rightarrow\left[n^{3}\right]$ (instead of continuous range $[0,1]$), and analyze how much additional storage the hash function requires.

Hint: Our analysis used events of the form $\{h(i)<t h r e s h o l d\}$, and relied on independence for every pair $h(i), h(j)$.

[^0]: *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

