Randomized Algorithms 2017A – Lecture 11 Graph Laplacians and Spectral Sparsification*

Robert Krauthgamer

1 Graph Laplacians

High-level motivation: We saw dimension reduction for ℓ_2 (the JL-lemma). What is the analogue for graphs (and combinatorial objects in general)? The idea is to find a *sparse* graph G' that is "similar" to G, either (1) in the sense of cuts in the graph, or (2) viewing a graph as a real matrix (i.e., a linear operator).

Graph Laplacians: Let G = (V, E, w) be an undirected graph with edge weights $w_e \ge 0$, where $w_{ij} = 0$ effectively means that $ij \notin E$. As usual, it is illustrative to think of the unit-weight case.

Notation: Assume $V = \{1, ..., n\}$ and let $e_i \in \mathbb{R}^n$ be the *i*-th standard basis vector. For an edge $uv \in E$, define

$$z_{uv} := e_u - e_v \in \mathbb{R}^n$$
$$Z_{uv} := z_{uv} z_{uv}^{\mathsf{T}} \in \mathbb{R}^{n \times n}$$

Remark: $z_{uv} = -z_{vu}$ but $Z_{uv} = Z_{vu}$.

Definition: The Laplacian matrix of G is the matrix

$$L_G := \sum_{uv \in E} w_{uv} Z_{uv} \in \mathbb{R}^{n \times n}.$$
(1)

Alternative definition: Then L_G is the matrix with diagonal entries $(L_G)_{ii} = d_i$, and off-diagonal entries $(L_G)_{ij} = -w_{ij}$.

Fact 1: The matrix $L = L_G$ is symmetric, non-diagonals entries are $L_{ij} = -w_{ij}$, and its diagonal entries are $L_{ii} = d_i$, where $d_i = \sum_{j:ij \in E} w_{ij}$ is the degree of vertex *i*.

It is useful to put these values in a diagonal matrix $D = \text{diag}(\vec{d})$. If G is unweighted, then L = D - A where A is the adjacency matrix.

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

2 Basics of Symmetric Matrices

The Spectral Theorem: Every symmetric matrix $M \in \mathbb{R}^{n \times n}$ can be written as

$$M = U\Lambda U^{\intercal},$$

where Λ is a diagonal matrix and U is an orthogonal matrix (i.e., $UU^{\dagger} = I$). This is called the *spectral decomposition* of M. Denoting the *i*-th column of U by $u_i \in \mathbb{R}^n$, we get that $\{u_1, \ldots, u_n\}$ is an orthonormal basis consisting of the eigenvectors of M, each associated with the eigenvalue $\lambda_i = \Lambda_{ii}$, and we can rewrite the above as

$$M = \sum_{i=1}^{n} \lambda_i u_i u_i^{\mathsf{T}}.$$

PSD matrices: A symmetric matrix $M \in \mathbb{R}^{n \times n}$ is called *positive semidefinite (PSD)* if it can be written as $M = BB^{\dagger}$. This is equivalent to requiring that all eigenvalues of M are non-negative, and also equivalent to requiring that

$$\forall x \in \mathbb{R}^n, \qquad x^{\mathsf{T}} M x \ge 0.$$

Exer: Show that every Symmetric Diagonally Dominant (SDD) matrix M (defined as $M_{ii} \geq \sum_{i \neq i} |M_{ij}|$ for all i) is PSD.

Fact 2: For every graph G, the Laplacian matrix L_G is PSD. Moreover, the number of nonzero eigenvalues of L_G (equivalently, rank $(L_G) = n - 1$), is exactly n minus the number of connected components in G. Thus, G is connected if and only if L_G has n - 1 nonzero eigenvalues.

Proof: For every $x \in \mathbb{R}^n$,

$$x^{\mathsf{T}}L_G x = \sum_{uv \in E} w_{uv}(x^{\mathsf{T}}Z_{uv}x) = \sum_{uv \in E} w_{uv}(z_{uv}^{\mathsf{T}}x)^2 = \sum_{uv \in E} w_{uv}(x_u - x_v)^2 \ge 0.$$

We leave the second part as an exercise, and just observe that for $x = \vec{1}$, the above expression is 0, and thus we always have an eigenvalue $\lambda = 0$, i.e., $\operatorname{rank}(L_G) \leq n - 1$.

3 Spectral Sparsifiers

Definition: A $(1 \pm \varepsilon)$ -spectral sparsifier of a graph G = (V, E, w) is a graph G' = (V, E', w') (on the same vertex set) such that

$$\forall x \in \mathbb{R}^n, \qquad x^{\mathsf{T}} L_{G'} x \in (1 \pm \varepsilon) \ x^{\mathsf{T}} L_G x. \tag{2}$$

Theorem 3 [Spielman-Srivastava, 2008]: For every $\varepsilon \in (0, 1/2)$, every *n*-vertex graph G = (V, E, w) has a $(1 \pm \varepsilon)$ -spectral sparsifier G' with $|E'| = O(\varepsilon^{-2}n \log n)$ edges. Moreover, G' is a reweighted subgraph of G, and it can be computed in randomized polynomial time (given G and ε as input).

Remarks:

(1) This theorem improves [Spielman-Teng, 2004] and [Benczur-Karger, 1996]. It was later improved by removing the $\log n$ factor in sparsity, which is the optimal bound [Batson-Spielman-Srivastava].

(2) We will focus on the existence of G'; a randomized polynomial-time algorithms is quite straightforward, and with more effort the runtime can be further improved to near-linear.

(3) We assume WLOG that G is connected.

Proposition 4: Suppose G' is a $(1 \pm \varepsilon)$ -spectral sparsifier of G, and denote the weight of a cut (S, \overline{S}) by $w(S, \overline{S}) := \sum_{uv \in E: u \in S, v \in \overline{S}} w_{uv}$ (and similarly for G'). Then

 $\forall S \subset V, \qquad w'(S, \bar{S}) \in (1 \pm \varepsilon) \ w(S, \bar{S}).$

(Such a graph G' is usually a called a *cut sparsifier*.)

Proof: Was seen in class by considering 0-1 vectors x.

Exer: Suppose G' is a $(1 \pm \varepsilon)$ -spectral sparsifier of G, and denote the eigenvalues of L_G by $\lambda_1 \geq \cdots \geq \lambda_n$, and those of L'_G by $\lambda'_1 \geq \cdots \geq \lambda'_n$. Show that

 $\forall i \in [n], \qquad \lambda'_i \in (1 \pm \varepsilon) \lambda_i.$

Hint: use the Courant-Fischer (min-max) characterization of eigenvalues.

4 Matrix Chernoff

Löwner ordering: We write $A \succeq 0$ to denote that A is PSD. We extend it to a partial ordering between symmetric matrices, defining $A \succeq B$ if $A - B \succeq 0$.

Observe that (2) can be written as

$$(1-\varepsilon)L_G \preccurlyeq L_{G'} \preccurlyeq (1+\varepsilon)L_G.$$

Matrix Chernoff bound [Tropp, 2012]: Let X_1, \ldots, X_k be independent random $n \times n$ symmetric matrices. Suppose that

$$\forall i \in [k], \quad 0 \preccurlyeq X_i \preccurlyeq I \quad \text{and} \quad \underline{\mu} \cdot I \preccurlyeq \sum_{i=1}^k \mathbb{E}[X_i] \preccurlyeq \overline{\mu} \cdot I.$$

Then for all $\varepsilon \in [0, 1]$,

$$\Pr\left[\lambda_{\max}(\sum_{i=1}^{k} X_i) \ge (1+\varepsilon)\overline{\mu}\right] \le n \cdot e^{-\varepsilon^2 \overline{\mu}/3},$$

$$\Pr\left[\lambda_{\min}(\sum_{i=1}^{k} X_i) \le (1+\varepsilon)\underline{\mu}\right] \le n \cdot e^{-\varepsilon^2 \overline{\mu}/2}.$$

5 Construction of Spectral Sparsifiers

We prove Theorem 3 using the following algorithm.

Algorithm SS:

1. Init w' = 0 and $k := 6\varepsilon^{-2}n\ln n$

2. Viewing G as an electrical network where each edge $e \in E$ has resistance $r_e = 1/w_e$, compute for every edge $e \in E$ its effective resistance $R_{\text{eff}}(e)$

3. For i = 1, ..., k

4. Pick an edge e at random with probability $p_e := \frac{w_e R_{eff}(e)}{n-1}$

5. Increase w'_e by $\frac{1}{k} \frac{1}{p_e} w_e = \frac{n-1}{k \cdot \mathbf{R}_{\text{eff}}(e)}$

6. Output the graph defined by w', i.e., the Laplacian $L_{G'} = \sum_{e \in E} w'_e Z_e$, similarly to (1).

Observe that G' is sparse, because $E' = \{e \in E : w'_e > 0\}$ has size $|E'| \le k$.

The next lemma shows that this algorithm (step 4) is well-defined. It requires expressing effective resistances explicitly using the Laplacian.

Lemma 5: The edge probabilities p_e sum up to 1.

Expressing effective resistances via Laplacians: Consider the electrical network corresponding to G, i.e., each edge $e \in E$ is resistor with resistance $r_e = 1/w_e$. If we fix the potentials according to some vector $\phi \in \mathbb{R}^n$, then some electrical flow (current) f will go through the resistors, and some will flow in/out of the vertices. Denote by a vector $x \in \mathbb{R}^n$ the flow injected to the vertices (opposite of the excess flow at each vertex). Then for every $u \in V$ (recall $d_u := \sum_{v \in N(u)} w_{uv}$),

$$x_{u} = \sum_{v \in N(u)} f_{uv}$$
(KCL)
$$= \sum_{v \in N(u)} \frac{\phi_{u} - \phi_{v}}{r_{uv}}$$
(Ohm)
$$= d_{v} \cdot \phi_{v} - \sum_{v \in N(u)} w_{vu} \phi_{u}.$$

In matrix notation, this is just

 $x = L_G \phi.$

It also works in the opposite direction, i.e., if we inject flow $x \in \mathbb{R}^n$ to the vertices, then the vertex potentials will be fixed to $\phi = L_G^{-1}x$ (formally, this should be the pseudo-inverse because L_G is singular, see more below, but we will generally gloss over this issue).

Recall that the effective resistance $R_{\text{eff}}(uv)$ is defined as the potential difference between $u, v \in V$ when shipping one unit of flow from u to v, i.e., injecting flow $z_{uv} = e_u - e_v$ (as the vector x). Then the vertex potentials are given by $\phi = L_G^{-1} z_{uv}$, and

$$\mathbf{R}_{\mathrm{eff}}(uv) = \phi_u - \phi_v = (e_u - e_v)^{\mathsf{T}} \phi = z_{uv}^{\mathsf{T}} L_G^{-1} z_{uv}.$$
(3)

Matrix powering and pseudo-inverse: Let M be a symmetric matrix, and recall we can always write it as $M = U\Lambda U^{\dagger}$, where $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$. Given $\alpha \in \mathbb{R}$, we can define the matrix power by essentially powering each eigenvalue separately, i.e.,

$$M^{\alpha} := U \operatorname{diag}(\lambda_1^{\alpha}, \dots, \lambda_n^{\alpha}) U^{\mathsf{T}}.$$

It clearly generalizes the usual matrix powers (for natural α), e.g., $M \cdot M = (U\Lambda U^{\dagger})(U\Lambda U^{\dagger}) = U\Lambda^2 U^{\dagger} = M^2$.

For us, the really important values of α are $\{-1, 1/2, -1/2\}$. For $\alpha = -1$, the only problem is with zero eigenvalues $\lambda_i = 0$, in which case just we leave them intact (not inverting these eigenvalues). This is called the *Moore-Penrose pseudo-inverse*, denote M^{\dagger} . Observe that M and M^{\dagger} have the same kernel.

For $\alpha = 1/2$, we basically restrict attention to PSD matrices, i.e., all $\lambda_i \ge 0$, and then there is no problem. For $\alpha = -1/2$, we combine both, i.e., restrict attention to PSD matrices (e.g., a Laplacian L_G), and power only the positive eigenvalues.

Observe that using these definitions, $(L_G^{1/2})^2 = L_G$ and that $L_G^{-1}L_G$ operates like the identity on every $x \perp \vec{1}$.

Proof of Lemma 5: Was seen in class using the cyclic property of trace.

Proof of Theorem 3: Was seen in class. The basic idea is to use the Matrix Chernoff bound, but since it is "built" for scenarios where the expectation is μI , we need to rotate/change the basis, achieved by multiplying by $L_G^{-1/2}$. More precisely, we define

$$y_{uv} := L_G^{-1/2} z_{uv},$$

and now claim (as an exercise) that

$$(1-\varepsilon)L_G \preccurlyeq L_{G'} = \sum_{e \in E} w'_e Z_e \preccurlyeq (1+\varepsilon)L_G \tag{4}$$

if and only if (modulo the pseudo-inverse/kernel issue)

$$(1-\varepsilon)I \preccurlyeq L_G^{-1/2} (\sum_{e \in E} w'_e z_e z_e^{\mathsf{T}}) L_G^{-1/2} = \sum_{e \in E} w'_e y_e y_e^{\mathsf{T}} \preccurlyeq (1+\varepsilon)I$$

(we just multiplied from left and right by $L_G^{-1/2}$) We denote the random edge chosen at iteration $i \in [k]$ by e_i , and then the matrix of interest can be written as

$$M' = \sum_{e \in E} w'_e y_e y_e^{\mathsf{T}} = \sum_{i=1}^k \frac{n-1}{k \cdot \mathrm{R}_{\mathrm{eff}}(e_i)} y_{e_i} y_{e_i}^{\mathsf{T}}.$$
(5)

To complete the proof of Theorem 3, we bound M' using the matrix Chernoff bound (after checking the conditions).

Exer: Explain how to modify the analysis when the sampling loop in steps 3-5 of Algorithm SS is changed to the following: for each edge $e \in E$, repeat $k' = O(\varepsilon^{-2} \log n)$ times, where each repetition increases the weight w'_e (as in step 6) independently with probability p_e .

Exer: Show how to modify the algorithm and its analysis to use estimates \tilde{p}_e instead of p_e (e.g., maybe these estimates can be computed very quickly), under the assumption that every $\tilde{p}_e \ge p_e$, and that $\sum_{e \in E} \tilde{p}_e \le C$.

Hint: you may use the preceding exercise.