Randomized Algorithms 2017A - Lecture 11
 Graph Laplacians and Spectral Sparsification*

Robert Krauthgamer

1 Graph Laplacians

High-level motivation: We saw dimension reduction for ℓ_{2} (the JL-lemma). What is the analogue for graphs (and combinatorial objects in general)? The idea is to find a sparse graph G^{\prime} that is "similar" to G, either (1) in the sense of cuts in the graph, or (2) viewing a graph as a real matrix (i.e., a linear operator).

Graph Laplacians: Let $G=(V, E, w)$ be an undirected graph with edge weights $w_{e} \geq 0$, where $w_{i j}=0$ effectively means that $i j \notin E$. As usual, it is illustrative to think of the unit-weight case.

Notation: Assume $V=\{1, \ldots, n\}$ and let $e_{i} \in \mathbb{R}^{n}$ be the i-th standard basis vector. For an edge $u v \in E$, define

$$
\begin{aligned}
z_{u v} & :=e_{u}-e_{v} \in \mathbb{R}^{n} \\
Z_{u v} & :=z_{u v} z_{u v}^{\top} \in \mathbb{R}^{n \times n} .
\end{aligned}
$$

Remark: $z_{u v}=-z_{v u}$ but $Z_{u v}=Z_{v u}$.
Definition: The Laplacian matrix of G is the matrix

$$
\begin{equation*}
L_{G}:=\sum_{u v \in E} w_{u v} Z_{u v} \in \mathbb{R}^{n \times n} . \tag{1}
\end{equation*}
$$

Alternative definition: Then L_{G} is the matrix with diagonal entries $\left(L_{G}\right)_{i i}=d_{i}$, and off-diagonal entries $\left(L_{G}\right)_{i j}=-w_{i j}$.

Fact 1: The matrix $L=L_{G}$ is symmetric, non-diagonals entries are $L_{i j}=-w_{i j}$, and its diagonal entries are $L_{i i}=d_{i}$, where $d_{i}=\sum_{j: i j \in E} w_{i j}$ is the degree of vertex i.

It is useful to put these values in a diagonal matrix $D=\operatorname{diag}(\vec{d})$. If G is unweighted, then $L=D-A$ where A is the adjacency matrix.

[^0]
2 Basics of Symmetric Matrices

The Spectral Theorem: Every symmetric matrix $M \in \mathbb{R}^{n \times n}$ can be written as

$$
M=U \Lambda U^{\top}
$$

where Λ is a diagonal matrix and U is an orthogonal matrix (i.e., $U U^{\top}=I$). This is called the spectral decomposition of M. Denoting the i-th column of U by $u_{i} \in \mathbb{R}^{n}$, we get that $\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal basis consisting of the eigenvectors of M, each associated with the eigenvalue $\lambda_{i}=\Lambda_{i i}$, and we can rewrite the above as

$$
M=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{\top}
$$

PSD matrices: A symmetric matrix $M \in \mathbb{R}^{n \times n}$ is called positive semidefinite ($P S D$) if it can be written as $M=B B^{\top}$. This is equivalent to requiring that all eigenvalues of M are non-negative, and also equivalent to requiring that

$$
\forall x \in \mathbb{R}^{n}, \quad x^{\top} M x \geq 0
$$

Exer: Show that every Symmetric Diagonally Dominant (SDD) matrix M (defined as $M_{i i} \geq$ $\sum_{j \neq i}\left|M_{i j}\right|$ for all $\left.i\right)$ is PSD.
Fact 2: For every graph G, the Laplacian matrix L_{G} is PSD. Moreover, the number of nonzero eigenvalues of L_{G} (equivalently, $\operatorname{rank}\left(L_{G}\right)=n-1$), is exactly n minus the number of connected components in G. Thus, G is connected if and only if L_{G} has $n-1$ nonzero eigenvalues.

Proof: For every $x \in \mathbb{R}^{n}$,

$$
x^{\top} L_{G} x=\sum_{u v \in E} w_{u v}\left(x^{\top} Z_{u v} x\right)=\sum_{u v \in E} w_{u v}\left(z_{u v}^{\top} x\right)^{2}=\sum_{u v \in E} w_{u v}\left(x_{u}-x_{v}\right)^{2} \geq 0 .
$$

We leave the second part as an exercise, and just observe that for $x=\overrightarrow{1}$, the above expression is 0 , and thus we always have an eigenvalue $\lambda=0$, i.e., $\operatorname{rank}\left(L_{G}\right) \leq n-1$.

3 Spectral Sparsifiers

Definition: A $(1 \pm \varepsilon)$-spectral sparsifier of a graph $G=(V, E, w)$ is a graph $G^{\prime}=\left(V, E^{\prime}, w^{\prime}\right)$ (on the same vertex set) such that

$$
\begin{equation*}
\forall x \in \mathbb{R}^{n}, \quad x^{\top} L_{G^{\prime}} x \in(1 \pm \varepsilon) x^{\top} L_{G} x . \tag{2}
\end{equation*}
$$

Theorem 3 [Spielman-Srivastava, 2008]: For every $\varepsilon \in(0,1 / 2)$, every n-vertex graph $G=$ (V, E, w) has a $(1 \pm \varepsilon)$-spectral sparsifier G^{\prime} with $\left|E^{\prime}\right|=O\left(\varepsilon^{-2} n \log n\right)$ edges. Moreover, G^{\prime} is a reweighted subgraph of G, and it can be computed in randomized polynomial time (given G and ε as input).

Remarks:
(1) This theorem improves [Spielman-Teng, 2004] and [Benczur-Karger, 1996]. It was later improved by removing the $\log n$ factor in sparsity, which is the optimal bound [Batson-Spielman-Srivastava].
(2) We will focus on the existence of G^{\prime}; a randomized polynomial-time algorithms is quite straightforward, and with more effort the runtime can be further improved to near-linear.
(3) We assume WLOG that G is connected.

Proposition 4: Suppose G^{\prime} is a ($1 \pm \varepsilon$)-spectral sparsifier of G, and denote the weight of a cut (S, \bar{S}) by $w(S, \bar{S}):=\sum_{u v \in E: u \in S, v \in \bar{S}} w_{u v}$ (and similarly for $\left.G^{\prime}\right)$. Then

$$
\forall S \subset V, \quad w^{\prime}(S, \bar{S}) \in(1 \pm \varepsilon) w(S, \bar{S})
$$

(Such a graph G^{\prime} is usually a called a cut sparsifier.)
Proof: Was seen in class by considering 0-1 vectors x.
Exer: Suppose G^{\prime} is a $(1 \pm \varepsilon)$-spectral sparsifier of G, and denote the eigenvalues of L_{G} by $\lambda_{1} \geq \cdots \geq \lambda_{n}$, and those of L_{G}^{\prime} by $\lambda_{1}^{\prime} \geq \cdots \geq \lambda_{n}^{\prime}$. Show that

$$
\forall i \in[n], \quad \lambda_{i}^{\prime} \in(1 \pm \varepsilon) \lambda_{i} .
$$

Hint: use the Courant-Fischer (min-max) characterization of eigenvalues.

4 Matrix Chernoff

Löwner ordering: We write $A \succcurlyeq 0$ to denote that A is PSD. We extend it to a partial ordering between symmetric matrices, defining $A \succcurlyeq B$ if $A-B \succcurlyeq 0$.

Observe that ((Z) can be written as

$$
(1-\varepsilon) L_{G} \preccurlyeq L_{G^{\prime}} \preccurlyeq(1+\varepsilon) L_{G} .
$$

Matrix Chernoff bound [Tropp, 2012]: Let X_{1}, \ldots, X_{k} be independent random $n \times n$ symmetric matrices. Suppose that

$$
\forall i \in[k], \quad 0 \preccurlyeq X_{i} \preccurlyeq I \quad \text { and } \quad \underline{\mu} \cdot I \preccurlyeq \sum_{i=1}^{k} \mathbb{E}\left[X_{i}\right] \preccurlyeq \bar{\mu} \cdot I .
$$

Then for all $\varepsilon \in[0,1]$,

$$
\begin{aligned}
& \operatorname{Pr}\left[\lambda_{\max }\left(\sum_{i=1}^{k} X_{i}\right) \geq(1+\varepsilon) \bar{\mu}\right] \leq n \cdot e^{-\varepsilon^{2} \bar{\mu} / 3}, \\
& \operatorname{Pr}\left[\lambda_{\min }\left(\sum_{i=1}^{k} X_{i}\right) \leq(1+\varepsilon) \underline{\mu}\right] \leq n \cdot e^{-\varepsilon^{2} \bar{\mu} / 2} .
\end{aligned}
$$

5 Construction of Spectral Sparsifiers

We prove Theorem 3 using the following algorithm.

Algorithm SS:

1. Init $w^{\prime}=0$ and $k:=6 \varepsilon^{-2} n \ln n$
2. Viewing G as an electrical network where each edge $e \in E$ has resistance $r_{e}=1 / w_{e}$, compute for every edge $e \in E$ its effective resistance $\mathrm{R}_{\mathrm{eff}}(e)$
3. For $i=1, \ldots, k$
4. Pick an edge e at random with probability $p_{e}:=\frac{w_{e} \mathrm{R}_{\mathrm{eff}}(e)}{n-1}$
5. Increase w_{e}^{\prime} by $\frac{1}{k} \frac{1}{p_{e}} w_{e}=\frac{n-1}{k \cdot \mathrm{R}_{\text {eff }}(e)}$
6. Output the graph defined by w^{\prime}, i.e., the Laplacian $L_{G^{\prime}}=\sum_{e \in E} w_{e}^{\prime} Z_{e}$, similarly to ($\mathbb{(1)}$).

Observe that G^{\prime} is sparse, because $E^{\prime}=\left\{e \in E: w_{e}^{\prime}>0\right\}$ has size $\left|E^{\prime}\right| \leq k$.
The next lemma shows that this algorithm (step 4) is well-defined. It requires expressing effective resistances explicitly using the Laplacian.

Lemma 5: The edge probabilities p_{e} sum up to 1.
Expressing effective resistances via Laplacians: Consider the electrical network corresponding to G, i.e., each edge $e \in E$ is resistor with resistance $r_{e}=1 / w_{e}$. If we fix the potentials according to some vector $\phi \in \mathbb{R}^{n}$, then some electrical flow (current) f will go through the resistors, and some will flow in/out of the vertices. Denote by a vector $x \in \mathbb{R}^{n}$ the flow injected to the vertices (opposite of the excess flow at each vertex). Then for every $u \in V$ (recall $\left.d_{u}:=\sum_{v \in N(u)} w_{u v}\right)$,

$$
\begin{align*}
x_{u} & =\sum_{v \in N(u)} f_{u v} \tag{KCL}\\
& =\sum_{v \in N(u)} \frac{\phi_{u}-\phi_{v}}{r_{u v}} \tag{Ohm}\\
& =d_{v} \cdot \phi_{v}-\sum_{v \in N(u)} w_{v u} \phi_{u} .
\end{align*}
$$

In matrix notation, this is just

$$
x=L_{G} \phi .
$$

It also works in the opposite direction, i.e., if we inject flow $x \in \mathbb{R}^{n}$ to the vertices, then the vertex potentials will be fixed to $\phi=L_{G}^{-1} x$ (formally, this should be the pseudo-inverse because L_{G} is singular, see more below, but we will generally gloss over this issue).
Recall that the effective resistance $\mathrm{R}_{\text {eff }}(u v)$ is defined as the potential difference between $u, v \in V$ when shipping one unit of flow from u to v, i.e., injecting flow $z_{u v}=e_{u}-e_{v}$ (as the vector x). Then the vertex potentials are given by $\phi=L_{G}^{-1} z_{u v}$, and

$$
\begin{equation*}
\mathrm{R}_{\mathrm{eff}}(u v)=\phi_{u}-\phi_{v}=\left(e_{u}-e_{v}\right)^{\top} \phi=z_{u v}^{\top} L_{G}^{-1} z_{u v} \tag{3}
\end{equation*}
$$

Matrix powering and pseudo-inverse: Let M be a symmetric matrix, and recall we can always write it as $M=U \Lambda U^{\top}$, where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Given $\alpha \in \mathbb{R}$, we can define the matrix power by essentially powering each eigenvalue separately, i.e.,

$$
M^{\alpha}:=U \operatorname{diag}\left(\lambda_{1}^{\alpha}, \ldots, \lambda_{n}^{\alpha}\right) U^{\top} .
$$

It clearly generalizes the usual matrix powers (for natural α), e.g., $M \cdot M=\left(U \Lambda U^{\top}\right)\left(U \Lambda U^{\top}\right)=$ $U \Lambda^{2} U^{\top}=M^{2}$.

For us, the really important values of α are $\{-1,1 / 2,-1 / 2\}$. For $\alpha=-1$, the only problem is with zero eigenvalues $\lambda_{i}=0$, in which case just we leave them intact (not inverting these eigenvalues). This is called the Moore-Penrose pseudo-inverse, denote M^{\dagger}. Observe that M and M^{\dagger} have the same kernel.

For $\alpha=1 / 2$, we basically restrict attention to PSD matrices, i.e., all $\lambda_{i} \geq 0$, and then there is no problem. For $\alpha=-1 / 2$, we combine both, i.e., restrict attention to PSD matrices (e.g., a Laplacian L_{G}), and power only the positive eigenvalues.

Observe that using these definitions, $\left(L_{G}^{1 / 2}\right)^{2}=L_{G}$ and that $L_{G}^{-1} L_{G}$ operates like the identity on every $x \perp \overrightarrow{1}$.

Proof of Lemma 5: Was seen in class using the cyclic property of trace.
Proof of Theorem 3: Was seen in class. The basic idea is to use the Matrix Chernoff bound, but since it is "built" for scenarios where the expectation is μI, we need to rotate/change the basis, achieved by multiplying by $L_{G}^{-1 / 2}$. More precisely, we define

$$
y_{u v}:=L_{G}^{-1 / 2} z_{u v},
$$

and now claim (as an exercise) that

$$
\begin{equation*}
(1-\varepsilon) L_{G} \preccurlyeq L_{G^{\prime}}=\sum_{e \in E} w_{e}^{\prime} Z_{e} \preccurlyeq(1+\varepsilon) L_{G} \tag{4}
\end{equation*}
$$

if and only if (modulo the pseudo-inverse/kernel issue)

$$
(1-\varepsilon) I \preccurlyeq L_{G}^{-1 / 2}\left(\sum_{e \in E} w_{e}^{\prime} z_{e} z_{e}^{\top}\right) L_{G}^{-1 / 2}=\sum_{e \in E} w_{e}^{\prime} y_{e} y_{e}^{\top} \preccurlyeq(1+\varepsilon) I
$$

(we just multiplied from left and right by $L_{G}^{-1 / 2}$) We denote the random edge chosen at iteration $i \in[k]$ by e_{i}, and then the matrix of interest can be written as

$$
\begin{equation*}
M^{\prime}=\sum_{e \in E} w_{e}^{\prime} y_{e} y_{e}^{\top}=\sum_{i=1}^{k} \frac{n-1}{k \cdot \mathrm{R}_{\mathrm{eff}}\left(e_{i}\right)} y_{e_{i}} y_{e_{i}}^{\top} . \tag{5}
\end{equation*}
$$

To complete the proof of Theorem 3, we bound M^{\prime} using the matrix Chernoff bound (after checking the conditions).

Exer: Explain how to modify the analysis when the sampling loop in steps 3-5 of Algorithm SS is changed to the following: for each edge $e \in E$, repeat $k^{\prime}=O\left(\varepsilon^{-2} \log n\right)$ times, where each repetition increases the weight w_{e}^{\prime} (as in step 6) independently with probability p_{e}.

Exer: Show how to modify the algorithm and its analysis to use estimates \tilde{p}_{e} instead of p_{e} (e.g., maybe these estimates can be computed very quickly), under the assumption that every $\tilde{p}_{e} \geq p_{e}$, and that $\sum_{e \in E} \tilde{p}_{e} \leq C$.
Hint: you may use the preceding exercise.

[^0]: *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

