Sublinear Time and Space Algorithms 2018B – Lecture 10 Geometric Streams and Coresets*

Robert Krauthgamer

1 Geometric Streams and Coresets

Geometric stream: The input is a stream of points in \mathbb{R}^d denoted $P = \langle p_1, \dots, p_n \rangle$.

Problem definition: The goal is to minimize some cost function $C_P : \mathbb{R}^d \to \mathbb{R}$, where $C_P(x)$ represents the cost of using x as a solution ("center") for input P.

For example, in the $Minimum\ Enclosing\ Ball\ (MEB)$ the goal is to find a ball of minimum radius that contains P. This problem is captured by the cost function

$$C_P^{MEB}(x) = \max_{p \in P} ||p - x||_2.$$

Other clustering problems where a similar approach may work: enclosing the points in a box (axis-parallel or not) or in a slab (between two parallel hyperplanes), or in a cylinder (the center x is replaced by a line).

Definition: We say that such a cost function C is monotone if

$$\forall x \in \mathbb{R}^d, Q \subset P, \qquad C_Q(x) \le C_P(x).$$

Definition [Agarwal, Har-Peled, and Varadarajan, 2004]: Given a monotone C, we say that $Q \subset P$ is an α -coreset for P if

$$\forall x \in \mathbb{R}^d, T \subset \mathbb{R}^d, \qquad C_{Q \cup T}(x) \le C_{P \cup T}(x) \le \alpha \cdot C_{Q \cup T}(x).$$

The idea is that by storing the small subset Q we can approximate the optimum for P within factor α , even if more points will be added later.

Plan: We will show that MEB admits a small coreset, and that small coresets (with certain properties) yield low-storage streaming algorithms.

Theorem 1: For every $d \ge 2$ and $\varepsilon \in (0, 1/2)$, the cost function C_P^{MEB} has a $(1 + \varepsilon)$ -coreset of size $O(1/\varepsilon^{(d-1)/2})$.

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

Before proving the theorem, let's discuss the implications to streaming algorithms.

Merge Property: If Q is an α -coreset of P, and Q' is an α' -coreset of P', then $Q \cup Q'$ is an $(\alpha \cdot \alpha')$ -coreset of $P \cup P'$.

Reduce Property: If Q is an α -coreset of P, and R is a β -coreset of Q, then R is an $(\alpha\beta)$ -coreset of P.

Disjoint Union Property ("strong" version of merge): If Q is an α -coreset of P, and Q' is an α' -coreset of P', then $Q \cup Q'$ is a max $\{\alpha, \alpha'\}$ -coreset of $P \cup P'$.

Lemma: Coresets for monotone C satisfy the Merge and Reduce properties. Coresets for C_P^{MEB} satisfy also the Disjoint Union property.

Exer: Prove this lemma.

Theorem 2: Suppose the cost function C is monotone, admits $(1+\varepsilon')$ -coreset of size $f(\varepsilon')$ for every $\varepsilon' \in (0, 1/2)$, and that these coresets have the Disjoint Union property. Then there is a streaming algorithm for minimizing C_P , that achieves $1+O(\varepsilon)$ approximation using $O(f(\varepsilon/\log n) \cdot \log n)$ words of space.

Remark: this algorithm outputs both an estimate for the optimal cost and a near-optimal center $\tilde{x} \in \mathbb{R}^d$.

Remark: We (implicitly) assume that when $|P| \leq 2f(\varepsilon')$ (small inputs), (i) a coreset as above can be computed using space $O(f(\varepsilon'))$, and (ii) a solution x that minimizes $C_P(x)$ can be computed.

Proof of Theorem 2: The algorithm uses the "merge and reduce" approach. We will first describe it as a non-streaming algorithm, based on a hierarchical partitioning of the stream.

Suppose the stream is partitioned into "blocks" of size B, which is a "buffer" size to be chosen later, and let $\varepsilon' = \varepsilon/\log n$. Now build a binary tree on these blocks in the natural order. Specifically, at level 0 (the n/B leaves of the tree), each node i gets as input the i-th block and outputs it without processing. At level $h = 1, \ldots, \log_2(n/B)$, the input for each node is the concatenation of its two children's outputs Q and Q'. The node then computes a $(1 + \varepsilon')$ -coreset R for $Q \cup Q'$, and outputs this R.

At the top level h, after the algorithm computes a final coreset \tilde{R} , it computes also an optimal $\tilde{x} \in \mathbb{R}^d$ and outputs this \tilde{x} and its cost $C_{\tilde{R}}(\tilde{x})$.

The output of each node at level $h \ge 1$ is a subset of size $f(\varepsilon')$, and this bound extends also to level h = 0 by setting $B = f(\varepsilon')$.

Correctness: We prove by induction that the output of every node at level h is a $(1 + \varepsilon')^h$ -coreset of the points fed into its descendant leaves. Indeed, consider a node at level h. Suppose it receives from its children two sets Q and Q' that are $(1 + \varepsilon')^{h-1}$ -coresets of the respective original points P and P'. Then by the Disjoint Union property, $Q \cup Q'$ is a $(1 + \varepsilon')^{h-1}$ -coreset of $P \cup P'$. By the Reduce property, this node's output R is a $(1 + \varepsilon')^h$ -coreset of $P \cup P'$.

The output \tilde{x} is optimal for the final $(1 + \varepsilon')^h$ -coreset \tilde{R} , and thus achieves approximation factor $(1 + \varepsilon')^h \leq e^{\varepsilon' h} \leq e^{\varepsilon} \leq 1 + 2\varepsilon$.

Streaming Implementation: We will run $\log_2(n/B)$ algorithms in parallel, one for each level of the tree. The algorithm at each level $h \geq 1$ reads a virtual stream produced by the algorithm of level h-1, and produces a virtual stream for level h+1. It uses a buffer of size 2B to store the inputs P and P' from the "next" two children. When these arrive, it computes a new coreset R and outputs this R, and now the buffer is emptied and the process starts again.

The total storage requirement (for all levels) is $O(B \log(n/B)) = O(f(\varepsilon/\log n) \cdot \log n)$ words of space.

QED.

Corollary 3: Minimum Enclosing Ball has a streaming algorithm that achieves $(1+\varepsilon)$ -approximation with storage requirement $O(\frac{\log^{(d+1)/2} n}{\varepsilon^{(d-1)/2}})$.

Exer: Show that the particular coreset we design below for MEB, can be easily computed in a streaming fashion directly (without the "merge and reduce" approach) yielding a streaming algorithm with storage $O(f(\varepsilon)) = O(\varepsilon^{(d-1)/2})$.

2 Coreset for Minimum Enclosing Ball

Grids in \mathbb{R}^d : For non-zero vectors $u, v \in \mathbb{R}^d$ define $angle(u, v) = arccos \frac{\langle u, v \rangle}{\|u\|_2 \|v\|_2}$.

We say that $U \subset \mathbb{R}^d \setminus \{0\}$ is a θ -grid (or θ -cover) if

$$\forall x \in \mathbb{R}^d, \ \exists u \in U, \quad 0 \le \text{angle}(x, u) \le \theta.$$

We will need the following theorem (without proof).

Theorem 4: For every $\theta > 0$ there exists a θ -grid U of size $O(1/\theta^{d-1})$. In fact, we may assume it consists of unit-length vectors.

Proof of Theorem 1: Fix a θ -grid U (of unit-length vectors) for $\theta = \sqrt{\varepsilon}$. Given P, define

$$Q = \bigcup_{u \in U} \{ \underset{p \in P}{\operatorname{argmax}} \langle p, u \rangle \}.$$

That is, Q stores for each direction $u \in U$ an "extreme" point in this direction (as measured by projection on u).

To prove that Q is a $(1+\theta^2)$ -coreset, consider $x \in \mathbb{R}^d$ and $T \subset \mathbb{R}^d$, and let us show that $C_{P \cup T}(x) \le (1+\varepsilon)C_{Q \cup T}(x)$. There exists $z \in P \cup T$ that realizes the LHS, i.e., $C_{P \cup T}(x) = ||z-x||_2$ (a point in $P \cup T$ that is farthest from x).

We now have two cases. If $z \in T$, then clearly $||z - x||_2 \le C_{Q \cup T}(x)$.

Otherwise $(z \in P)$, there is $u \in U$ such that $0 \le \text{angle}(z - x, u) \le \theta$. Let $q \in P$ be the point that maximizes $\langle q, u \rangle$. Then $q \in Q$, and we get that

$$C_{O \cup T}(x) \ge ||q - x||_2.$$

Since $z \in P$ is a candidate for this maximization, $\langle q, u \rangle \geq \langle z, u \rangle$, and we get (recall u has unit length)

$$||q - x||_2 \ge \langle q - x, u \rangle \ge \langle z - x, u \rangle \ge \cos \theta \cdot ||z - x||_2.$$

A more geometric way to see the last inequality: let z' be the projection of z on the line $\{x + \gamma u : \gamma \in \mathbb{R}\}$, and let q' be the projection of q on the same line. Since $z \in P$ is a candidate for the maximization (projection on the line),

$$||q - x||_2 \ge ||q' - x||_2 \ge ||z' - x||_2 \ge \cos \theta \cdot ||z - x||_2$$

where the last inequality follow from the angle $angle(u, z - x) \le \theta$ in the triangle x, z, z'.

To complete the proof, recall that $||z-x||_2 = C_{P \cup T}(x)$ and use $\cos \theta \ge 1 - \theta^2/2 \ge \frac{1}{1+\theta^2}$, hence $C_{Q \cup T}(x) \ge \frac{1}{1+\varepsilon} C_{P \cup T}(x)$.

Finally, use Theorem 4 to bound the size of the coreset

$$|Q| \le |U| = O(1/\varepsilon^{(d-1)/2}).$$