Sublinear Time and Space Algorithms 2018B - Problem Set 3

Robert Krauthgamer

Due: May 27, 2018

General instructions: Please keep your answers short and easy to read. You can use results, calculations or notation seen in class without repeating them, unless asked explicitly to redo them.

1. Let $h^{\prime}, h^{\prime \prime} \in \mathbb{R}^{n}$ be supported on disjoint sets $T^{\prime}, T^{\prime \prime} \subset[n]$ respectively, and let the matrix $A \in \mathbb{R}^{m \times n}$ be $\left(\left|T^{\prime}\right|+\left|T^{\prime \prime}\right|, \varepsilon_{0}\right)$-RIP. Show that

$$
\left|\left\langle A h^{\prime}, A h^{\prime \prime}\right\rangle\right| \leq \varepsilon_{0}\left\|h^{\prime}\right\|_{2}\left\|h^{\prime \prime}\right\|_{2} .
$$

Hint: Consider first $h^{\prime}, h^{\prime \prime}$ that have unit length, and apply the formula $\|u+v\|_{2}^{2}-\|u-v\|_{2}^{2}=$ $4\langle u, v\rangle$ to $u=A h^{\prime}$ and $v=A h^{\prime \prime}$.
2. Show how to reconstruct an unknown k-sparse $x \in \mathbb{R}^{n}$ from a ($2 k, 0.1$)-RIP matrix $A \in \mathbb{R}^{m \times n}$ and $y=A x$, in time $n^{O(k)}$ and with no errors.
Hint: start by showing that there is a unique suitable x.
3. Let $u \sim \operatorname{Exp}(1)$ be a random variable with exponential distribution. Show that

$$
\mathbb{E}\left[\frac{1}{u} \left\lvert\, \frac{1}{u} \leq n^{3}\right.\right]=O(\log n)
$$

Extra credit:

4. Show how to improve the multiplicative error in the Precision Sampling Lemma to $1+\varepsilon$. How would it increase the total cost of the estimator?
Hint: Use independent repetitions.
5. Show that for an arbitrary $x \in \mathbb{R}^{n}$, if some \tilde{x} satisfies the ℓ_{1} / ℓ_{2} guarantee

$$
\|x-\tilde{x}\|_{2} \leq \frac{O(1)}{\sqrt{k}}\left\|x_{t a i l(k)}\right\|_{1}
$$

(e.g., as seen in class using an RIP measurement matrix), then $x^{*}=\tilde{x}_{t o p(k)}$ satisfies the ℓ_{1} / ℓ_{1} guarantee

$$
\left\|x-x^{*}\right\|_{1} \leq O(1)\left\|x_{\text {tail }(k)}\right\|_{1}
$$

Hint: Let T be the top k coordinates of x, and \tilde{T} the top k coordinates of \tilde{x}. Split the coordinates into $\tilde{T}, T \backslash \tilde{T}$, and the rest.

