Randomized Algorithms 2019A - Lecture 13 Dimension Reduction in $\ell_{2}{ }^{*}$

Robert Krauthgamer

1 The Johnson-Lindenstrauss (JL) Lemma

The Johnson-Lindenstrauss (JL) Lemma: Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ and fix $0<\varepsilon<1$. Then there exist $y_{1}, \ldots, y_{n} \in \mathbb{R}^{k}$ for $k=O\left(\varepsilon^{-2} \log n\right)$, such that

$$
\forall i, j \in[n], \quad\left\|y_{i}-y_{j}\right\|_{2} \in(1 \pm \varepsilon)\left\|x_{i}-x_{j}\right\|_{2}
$$

Moreover, there is a randomized linear mapping $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ (oblivious to the given points), such that if we define $y_{i}=L x_{i}$, then with probability at least $1-1 / n$ all the above inequalities hold.

Throughout, all norms are ℓ_{2}, unless stated otherwise.
Remark: there is no assumption on the input points (e.g., that they lie in a low-dimensonal space).
Idea: The map L is essentially (up to normalization) a matrix of standard Gaussians. In fact, random signs ± 1 work too!

Since L is linear, $L x_{i}-L x_{j}=L\left(x_{i}-x_{j}\right)$, and it suffices to verify that L preserves the norm of arbitrary vector WHP (instead of arbitrary pair of vectors).

Lemma 2 (Main): Fix $\delta \in(0,1)$ and let $G \in \mathbb{R}^{k \times d}$ be a random matrix of standard Gaussians, for suitable $k=O\left(\varepsilon^{-2} \log \frac{1}{\delta}\right)$. Then

$$
\forall v \in \mathbb{R}^{d}, \quad \operatorname{Pr}[\|G v\| \notin(1 \pm \varepsilon) \sqrt{k}\|v\|] \leq \delta .
$$

Using main lemma: Let $L=G / \sqrt{k}$, and recall we defined $y_{i}=L x_{i}$. For every $i<j$, apply the lemma to $x_{i}-x_{j}$, then with probability at least $1-\delta=1-1 / n^{3}$,

$$
\left\|y_{i}-y_{j}\right\|=\left\|L\left(x_{i}-x_{j}\right)\right\|=\left\|G\left(x_{i}-x_{j}\right)\right\| / \sqrt{k} \in(1 \pm \varepsilon)\left\|x_{i}-x_{j}\right\| .
$$

Now apply a union bound over $\binom{n}{2}$ pairs.
QED

[^0]It remains to prove the main lemma.
Fact 3 (the sum of Gaussians is Gaussian): Let $X \sim N\left(0, \sigma_{X}^{2}\right)$ and $Y \sim N\left(0, \sigma_{Y}^{2}\right)$ be independent Gaussian random variables. Then $X+Y \sim N\left(0, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$.
The proof is by writing the CDF function (integration), recall that PDF is $\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.
Corollary 4 (Gaussians are 2-stable): Let X_{1}, \ldots, X_{n} be independent standard Gaussians $N(0,1)$, and let $\sigma_{1}, \ldots, \sigma_{n} \in \mathbb{R}$. Then $\sum_{i} \sigma_{i} X_{i} \sim N\left(0, \sum_{i} \sigma_{i}^{2}\right)$.

Follows by induction.
Proof of main lemma: Was seen in class, using the next claim.
Claim 5: Let Y have chi-squared distribution with parameter k, i.e., $Y=\sum_{i=1}^{k} X_{i}^{2}$ for independent $X_{1}, \ldots, X_{k} \sim N(0,1)$. Then

$$
\forall \varepsilon \in(0,1), \quad \operatorname{Pr}\left[Y \geq(1+\varepsilon)^{2} k\right] \leq e^{-\varepsilon^{2} k / 2}
$$

Remark: The claim and its proof are similar to Hoeffding bounds. Indeed, one may compare Claim 5 to the case $Y \sim 2 \cdot B(k, 1 / 2)$ which has the same expectation.

Proof of Claim 5: Was seen in class, using the following exercise.
Exer: Prove (by evaluating the integral, and substituting $z=x \sqrt{1-2 t}$) that

$$
\mathbb{E}\left[e^{t X_{i}^{2}}\right]=\frac{1}{\sqrt{1-2 t}}
$$

Exer: Extend the JL Lemma (via the main lemma) to every matrix G whose entries are iid from a distribution that has mean 0 , variance 1 , and sub-Gaussian tail which means that for some fixed $C>0$,

$$
\forall t>0, \quad \mathbb{E}\left[e^{t X}\right] \leq e^{C t^{2}}
$$

Then use it to conclude in particular for a matrix of ± 1.
Hint: Use the following trick. Introduce a standard Gaussian Z independent of X, then $\mathbb{E}\left[e^{t Z}\right]=$ $e^{t^{2} / 2}$, and thus

$$
\mathbb{E}_{X}\left[e^{t X^{2}}\right]=\mathbb{E}_{X}\left[e^{(\sqrt{2 t} X)^{2} / 2}\right]=\mathbb{E}_{X} \mathbb{E}_{Z}\left[e^{(\sqrt{2 t} X) Z}\right]=\mathbb{E}_{Z} \mathbb{E}_{X}\left[e^{(\sqrt{2 t} Z) X}\right] \leq \mathbb{E}_{Z}\left[e^{2 C t Z^{2}}\right]
$$

and the last term can be evaluated using the previous exercise.

2 Fast JL Transform

Computing the JL map of a vector requires the multiplication of a matrix $L \in \mathbb{R}^{k \times d}$ with a vector $x \in \mathbb{R}^{d}$, which generally takes $O(k d)$ time, because L is a dense matrix.

Question: Can we compute it faster?

Sparse JL: Some constructions (see Kane-Nelson, JACM 2014) use a sparse matrix L, namely, only an ε-fraction of the entries are nonzero, leading to a speedup by factor ε (and even more if x is sparse).

We will see another approach, where L is dense but its special structure leads to fast multiplication, close to $O(d+k)$ instead of $O(k d)$.
Theorem 6 [Ailon and Chazelle, 2006]: There is a random matrix $L \in \mathbb{R}^{k \times d}$ that satisfies the guarantees of the JL lemma and for which matrix-vector multiplication takes time $O\left(d \log d+k^{3}\right)$.

We will see a simplified version of this theorem (faster but higher dimension).
Theorem 7: For every $d \geq 1$ and $0<\delta<1$, there is a random matrix $L \in \mathbb{R}^{k \times d}$ for $k=$ $O\left(\varepsilon^{-2} \log ^{2}(d / \delta) \log (1 / \delta)\right)$, such that

$$
\forall v \in \mathbb{R}^{d}, \quad \operatorname{Pr}[\|L v\| \notin(1 \pm \varepsilon)\|v\|] \leq 1 / \delta,
$$

and multiplying L with a vector v takes time $O(d \log d+k)$.
Super-Sparse Sampling: A basic idea is to just sample one entry of v (each time).
Let $S \in \mathbb{R}^{k \times d}$ be a matrix where each row has a single nonzero entry of value $\sqrt{d / k}$ in a uniformly random location. This is sometimes called a sampling matrix (up to appropriate scaling). For every $v \in \mathbb{R}^{d}$,

$$
\begin{aligned}
& \mathbb{E}\left[(S v)_{1}^{2}\right]=\sum_{j=1}^{d} \frac{1}{d}\left(\sqrt{d / k} \cdot v_{j}\right)^{2}=\frac{1}{k}\|v\|^{2} . \\
& \mathbb{E}\left[\|S v\|^{2}\right]=\sum_{i=1}^{k} \mathbb{E}\left[(S v)_{i}^{2}\right]=\|v\|^{2} .
\end{aligned}
$$

The expectation is correct, however the variance can be huge, e.g., if v has just one nonzero coordinate, then for S to be likely to sample it, we need $k=\Omega(d)$.
We shall first see how to transform v into a vector $y \in \mathbb{R}^{d}$ with no "heavy" coordinate, meaning that

$$
\frac{\|y\|_{\infty}}{\|y\|_{2}} \approx \frac{1}{\sqrt{d}} .
$$

and later we will prove that super-sparse sampling works for such vectors.
Definition: A Hadamard matrix is a matrix $H \in \mathbb{R}^{d \times d}$ that is orthogonal, i.e., $H^{T} H=I$ and all its entries are in $\{ \pm 1 / \sqrt{d}\}$.
Observe that by definition $\|H v\|_{2}^{2}=(H v)^{T}(H v)=v^{T} v=\|v\|_{2}$.
When d is a power of 2 , such a matrix exists, and can be constructed by induction as follows (called
a Walsh-Hadamard matrix).

$$
\begin{aligned}
H_{2} & =\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) / \sqrt{2}, \\
H_{d} & =\left(\begin{array}{cc}
H_{d / 2} & H_{d / 2} \\
H_{d / 2} & -H_{d / 2}
\end{array}\right) / \sqrt{2} .
\end{aligned}
$$

It is easy to verify it is indeed a Hadamard matrix, i.e., that all entries are $\pm 1 / \sqrt{d}$ and $H_{d}^{T} H_{d}=I$.
Lemma 8: Multiplying H_{d} by a vector can be performed in time $O(d \log d)$.
Exer: Prove this lemma, using divide and conquer.
Randomized Hadamard matrix: Let $D \in \mathbb{R}^{d \times d}$ be a diagonal matrix whose i th diagonal entry is an independent random sign $r_{i} \in\{ \pm 1\}$. Observe that $H D$ is a random Hadamard matrix, because its entries are still $\pm 1 / \sqrt{d}$ and $(H D)^{T}(H D)=D^{T} H^{T} H D=D^{T} D=I$.
Lemma 9: Let $H D$ be a random Hadamard matrix as above, and let $\delta \in(0,1)$. Then

$$
\forall 0 \neq v \in \mathbb{R}^{d}, \quad \operatorname{Pr}_{D}\left[\frac{\|H D v\|_{\infty}}{\|H D v\|_{2}} \geq \sqrt{\frac{2 \ln (4 d / \delta)}{d}}\right] \leq \delta / 2 .
$$

Proof of Lemma 9: Was seen in class, using the following concentration bound.
Hoeffding's (generalized) inequality: Let X_{1}, \ldots, X_{n} be independent random variables where $X_{i} \in\left[a_{i}, b_{i}\right]$. Then $X=\sum_{i} X_{i}$ satisfies

$$
\forall t \geq 0, \quad \operatorname{Pr}[|X-\mathbb{E}[X]| \geq t] \leq 2 e^{-2 t^{2} / \sum_{i}\left(b_{i}-a_{i}\right)^{2}}
$$

Lemma 10: Let $S \in \mathbb{R}^{k \times d}$ be a super-sparse sampling matrix (i.e., each row has a single nonzero entry of value $\sqrt{d / k}$ in a uniformly random location). Then

$$
\forall y \in \mathbb{R}^{d},\|y\|_{2}=1,\|y\|_{\infty} \leq \lambda, \quad \underset{S}{\operatorname{Pr}}\left[\|S y\|_{2}^{2} \notin(1 \pm \varepsilon)\right] \leq 2 e^{-2 \varepsilon^{2} k /\left(d^{2} \lambda^{4}\right)}
$$

Exer: Prove this lemma using Hoeffding's inequality.
Proof of Theorem 7: Was briefly discussed in class and basically follows from Lemmas 9 and 10.

[^0]: *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

