Randomized Algorithms 2019A — Lecture 13
Dimension Reduction in #5*

Robert Krauthgamer

1 The Johnson-Lindenstrauss (JL) Lemma

The Johnson-Lindenstrauss (JL) Lemma: Let z,...,2, € R? and fix 0 < ¢ < 1. Then
there exist y1,...,y, € R¥ for k = O(¢ 2logn), such that

Vi,j€nl,  llyi—yilla € £ e)llzi — )2

Moreover, there is a randomized linear mapping L : R? — R* (oblivious to the given points), such
that if we define y; = Lz;, then with probability at least 1 — 1/n all the above inequalities hold.

Throughout, all norms are /o, unless stated otherwise.
Remark: there is no assumption on the input points (e.g., that they lie in a low-dimensonal space).

Idea: The map L is essentially (up to normalization) a matrix of standard Gaussians. In fact,
random signs £1 work too!

Since L is linear, Lz; — Lxzj = L(z; — x;), and it suffices to verify that L preserves the norm of
arbitrary vector WHP (instead of arbitrary pair of vectors).

Lemma 2 (Main): Fix § € (0,1) and let G € R¥*? be a random matrix of standard Gaussians,
for suitable k = O(¢~2log $). Then

v eR!,  Pr||Gu] ¢ is)\/Ean] < 6.
Using main lemma: Let L =G/ Vk, and recall we defined y; = Lz;. For every i < j, apply the
lemma to x; — x;, then with probability at least 1 - =1—-1/ n3,

lyi = yill = 1 L(2i = )| = |G(2i — )| /VE € (1 £&)||lzi — 2]

Now apply a union bound over (g) pairs.

QED

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.



It remains to prove the main lemma.

Fact 3 (the sum of Gaussians is Gaussian): Let X ~ N(0,0%) and Y ~ N(0,0%) be
independent Gaussian random variables. Then X +Y ~ N(0,0% + o2).

The proof is by writing the CDF function (integration), recall that PDF is \/%76*‘”2/2.

Corollary 4 (Gaussians are 2-stable): Let X,..., X, be independent standard Gaussians
N(0,1), and let 01,...,0, € R. Then Y, 0:X; ~ N(0,, 02).

Follows by induction.
Proof of main lemma: Was seen in class, using the next claim.

Claim 5: Let Y have chi-squared distribution with parameter k, i.e., Y = Zle XZ-2 for indepen-
dent X1q,..., X, ~ N(0,1). Then

Ve e (0,1), Pr[Y > (1+¢e)%k] < e =F/2
Remark: The claim and its proof are similar to Hoeffding bounds. Indeed, one may compare Claim
5 to the case Y ~ 2 B(k,1/2) which has the same expectation.

Proof of Claim 5: Was seen in class, using the following exercise.

Exer: Prove (by evaluating the integral, and substituting z = z+/1 — 2t) that

tX2) _ 1
Ele"*i] = —.

Exer: Extend the JL Lemma (via the main lemma) to every matrix G whose entries are iid from
a distribution that has mean 0, variance 1, and sub-Gaussian tail which means that for some fixed
C >0,

vt>0, E[eX] <.

Then use it to conclude in particular for a matrix of 41.

Hint: Use the following trick. Introduce a standard Gaussian Z independent of X, then E[e!?] =
et2/2, and thus

Ex [etXQ] —Eyx [e(\/ﬂX)Qﬂ] —Ey EZ[B(@X)Z] —EyEyx [e(\/ﬂZ)X] < EZ[€2CtZ2]
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and the last term can be evaluated using the previous exercise.

2 Fast JL Transform

Computing the JL map of a vector requires the multiplication of a matrix L € R¥*¢ with a vector
x € R?, which generally takes O(kd) time, because L is a dense matrix.

Question: Can we compute it faster?



Sparse JL: Some constructions (see Kane-Nelson, JACM 2014) use a sparse matrix L, namely,
only an e-fraction of the entries are nonzero, leading to a speedup by factor € (and even more if =
is sparse).

We will see another approach, where L is dense but its special structure leads to fast multiplication,
close to O(d + k) instead of O(kd).

Theorem 6 [Ailon and Chazelle, 2006]: There is a random matrix L € R¥*¢ that satisfies the
guarantees of the JL lemma and for which matrix-vector multiplication takes time O(dlogd + k3).

We will see a simplified version of this theorem (faster but higher dimension).
Theorem 7: For every d > 1 and 0 < § < 1, there is a random matrix L € R¥*¢ for k =
O(e2log?(d/5) log(1/6)), such that

voeRY,  Pr|Loll ¢ (1£e)|ol] < 1/5,

and multiplying L with a vector v takes time O(dlogd + k).
Super-Sparse Sampling: A basic idea is to just sample one entry of v (each time).

Let S € R**? be a matrix where each row has a single nonzero entry of value /d/k in a uniformly

random location. This is sometimes called a sampling matrix (up to appropriate scaling). For every
v eRY

Zé d/k-v;)? = +|v]*
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<.
[y

E[]|Sv]|?]

The expectation is correct, however the variance can be huge, e.g., if v has just one nonzero
coordinate, then for S to be likely to sample it, we need k = Q(d).

We shall first see how to transform v into a vector y € R? with no “heavy” coordinate, meaning
that
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and later we will prove that super-sparse sampling works for such vectors.

Definition: A Hadamard matriz is a matrix H € R4*? that is orthogonal, i.e., HT H = I and all
its entries are in {4+1//d}.

Observe that by definition ||Hv||2 = (Hv)T (Hv) = vTv = ||v]|2.

When d is a power of 2, such a matrix exists, and can be constructed by induction as follows (called



a Walsh-Hadamard matrix).
1 1

Hqpo  Hgjp >
Hy = V2.
¢ <Hd/2 —Hys /

It is easy to verify it is indeed a Hadamard matrix, i.e., that all entries are £1/ Vd and Hng =1.
Lemma 8: Multiplying Hy by a vector can be performed in time O(dlogd).
Exer: Prove this lemma, using divide and conquer.

Randomized Hadamard matrix: Let D € R%*? be a diagonal matrix whose ith diagonal
entry is an independent random sign r; € {£1}. Observe that HD is a random Hadamard matrix,
because its entries are still +1/v/d and (HD)T(HD) = DT HTHD = DD = I.

Lemma 9: Let HD be a random Hadamard matrix as above, and let 6 € (0,1). Then

HDvl| 21In(4d/9)
Y0 # v € RY, Pr H > <4§/2.
7 [HHDUHQ = d <9/

D

Proof of Lemma 9: Was seen in class, using the following concentration bound.
Hoeffding’s (generalized) inequality: Let X7,..., X, be independent random variables where

X; € [a;,b;]. Then X =", X; satisfies

V20, Pr[lX - BX] > 1] < 2072 Db,

Lemma 10: Let S € R¥*? be a super-sparse sampling matrix (i.e., each row has a single nonzero
entry of value \/d/k in a uniformly random location). Then

vy € RY lylle = L llle <X RrISylE ¢ (14 2)] < 26720,

Exer: Prove this lemma using Hoeffding’s inequality.

Proof of Theorem 7: Was briefly discussed in class and basically follows from Lemmas 9 and
10.



