
Randomized Algorithms 2019A – Lecture 13

Dimension Reduction in ℓ2
∗

Robert Krauthgamer

1 The Johnson-Lindenstrauss (JL) Lemma

The Johnson-Lindenstrauss (JL) Lemma: Let x1, . . . , xn ∈ Rd and fix 0 < ε < 1. Then
there exist y1, . . . , yn ∈ Rk for k = O(ε−2 log n), such that

∀i, j ∈ [n], ∥yi − yj∥2 ∈ (1± ε)∥xi − xj∥2.

Moreover, there is a randomized linear mapping L : Rd → Rk (oblivious to the given points), such
that if we define yi = Lxi, then with probability at least 1− 1/n all the above inequalities hold.

Throughout, all norms are ℓ2, unless stated otherwise.

Remark: there is no assumption on the input points (e.g., that they lie in a low-dimensonal space).

Idea: The map L is essentially (up to normalization) a matrix of standard Gaussians. In fact,
random signs ±1 work too!

Since L is linear, Lxi − Lxj = L(xi − xj), and it suffices to verify that L preserves the norm of
arbitrary vector WHP (instead of arbitrary pair of vectors).

Lemma 2 (Main): Fix δ ∈ (0, 1) and let G ∈ Rk×d be a random matrix of standard Gaussians,
for suitable k = O(ε−2 log 1

δ ). Then

∀v ∈ Rd, Pr
[
∥Gv∥ /∈ (1± ε)

√
k∥v∥

]
≤ δ.

Using main lemma: Let L = G/
√
k, and recall we defined yi = Lxi. For every i < j, apply the

lemma to xi − xj , then with probability at least 1− δ = 1− 1/n3,

∥yi − yj∥ = ∥L(xi − xj)∥ = ∥G(xi − xj)∥/
√
k ∈ (1± ε)∥xi − xj∥.

Now apply a union bound over
(
n
2

)
pairs.

QED

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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It remains to prove the main lemma.

Fact 3 (the sum of Gaussians is Gaussian): Let X ∼ N(0, σ2
X) and Y ∼ N(0, σ2

Y ) be
independent Gaussian random variables. Then X + Y ∼ N(0, σ2

X + σ2
Y ).

The proof is by writing the CDF function (integration), recall that PDF is 1√
2π
e−x2/2.

Corollary 4 (Gaussians are 2-stable): Let X1, . . . , Xn be independent standard Gaussians
N(0, 1), and let σ1, . . . , σn ∈ R. Then

∑
i σiXi ∼ N(0,

∑
i σ

2
i ).

Follows by induction.

Proof of main lemma: Was seen in class, using the next claim.

Claim 5: Let Y have chi-squared distribution with parameter k, i.e., Y =
∑k

i=1X
2
i for indepen-

dent X1, . . . , Xk ∼ N(0, 1). Then

∀ε ∈ (0, 1), Pr[Y ≥ (1 + ε)2k] ≤ e−ε2k/2.

Remark: The claim and its proof are similar to Hoeffding bounds. Indeed, one may compare Claim
5 to the case Y ∼ 2 ·B(k, 1/2) which has the same expectation.

Proof of Claim 5: Was seen in class, using the following exercise.

Exer: Prove (by evaluating the integral, and substituting z = x
√
1− 2t) that

E[etX
2
i ] = 1√

1−2t
.

Exer: Extend the JL Lemma (via the main lemma) to every matrix G whose entries are iid from
a distribution that has mean 0, variance 1, and sub-Gaussian tail which means that for some fixed
C > 0,

∀t > 0, E[etX ] ≤ eCt2 .

Then use it to conclude in particular for a matrix of ±1.

Hint: Use the following trick. Introduce a standard Gaussian Z independent of X, then E[etZ ] =
et

2/2, and thus

EX [etX
2
] = EX [e(

√
2tX)2/2] = EX EZ [e

(
√
2tX)Z ] = EZ EX [e(

√
2tZ)X ] ≤ EZ [e

2CtZ2
],

and the last term can be evaluated using the previous exercise.

2 Fast JL Transform

Computing the JL map of a vector requires the multiplication of a matrix L ∈ Rk×d with a vector
x ∈ Rd, which generally takes O(kd) time, because L is a dense matrix.

Question: Can we compute it faster?
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Sparse JL: Some constructions (see Kane-Nelson, JACM 2014) use a sparse matrix L, namely,
only an ε-fraction of the entries are nonzero, leading to a speedup by factor ε (and even more if x
is sparse).

We will see another approach, where L is dense but its special structure leads to fast multiplication,
close to O(d+ k) instead of O(kd).

Theorem 6 [Ailon and Chazelle, 2006]: There is a random matrix L ∈ Rk×d that satisfies the
guarantees of the JL lemma and for which matrix-vector multiplication takes time O(d log d+ k3).

We will see a simplified version of this theorem (faster but higher dimension).

Theorem 7: For every d ≥ 1 and 0 < δ < 1, there is a random matrix L ∈ Rk×d for k =
O(ε−2 log2(d/δ) log(1/δ)), such that

∀v ∈ Rd, Pr
[
∥Lv∥ /∈ (1± ε)∥v∥

]
≤ 1/δ,

and multiplying L with a vector v takes time O(d log d+ k).

Super-Sparse Sampling: A basic idea is to just sample one entry of v (each time).

Let S ∈ Rk×d be a matrix where each row has a single nonzero entry of value
√
d/k in a uniformly

random location. This is sometimes called a sampling matrix (up to appropriate scaling). For every
v ∈ Rd,

E[(Sv)21] =
d∑

j=1

1
d(
√
d/k · vj)2 = 1

k∥v∥
2.

E[∥Sv∥2] =
k∑

i=1

E[(Sv)2i ] = ∥v∥2.

The expectation is correct, however the variance can be huge, e.g., if v has just one nonzero
coordinate, then for S to be likely to sample it, we need k = Ω(d).

We shall first see how to transform v into a vector y ∈ Rd with no “heavy” coordinate, meaning
that

∥y∥∞
∥y∥2

≈ 1√
d
.

and later we will prove that super-sparse sampling works for such vectors.

Definition: A Hadamard matrix is a matrix H ∈ Rd×d that is orthogonal, i.e., HTH = I and all
its entries are in {±1/

√
d}.

Observe that by definition ∥Hv∥22 = (Hv)T (Hv) = vT v = ∥v∥2.

When d is a power of 2, such a matrix exists, and can be constructed by induction as follows (called
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a Walsh-Hadamard matrix).

H2 =

(
1 1
1 −1

)
/
√
2,

Hd =

(
Hd/2 Hd/2

Hd/2 −Hd/2

)
/
√
2.

It is easy to verify it is indeed a Hadamard matrix, i.e., that all entries are ±1/
√
d and HT

d Hd = I.

Lemma 8: Multiplying Hd by a vector can be performed in time O(d log d).

Exer: Prove this lemma, using divide and conquer.

Randomized Hadamard matrix: Let D ∈ Rd×d be a diagonal matrix whose ith diagonal
entry is an independent random sign ri ∈ {±1}. Observe that HD is a random Hadamard matrix,
because its entries are still ±1/

√
d and (HD)T (HD) = DTHTHD = DTD = I.

Lemma 9: Let HD be a random Hadamard matrix as above, and let δ ∈ (0, 1). Then

∀0 ̸= v ∈ Rd, Pr
D

[
∥HDv∥∞
∥HDv∥2

≥
√

2 ln(4d/δ)

d

]
≤ δ/2.

Proof of Lemma 9: Was seen in class, using the following concentration bound.

Hoeffding’s (generalized) inequality: Let X1, . . . , Xn be independent random variables where
Xi ∈ [ai, bi]. Then X =

∑
iXi satisfies

∀t ≥ 0, Pr
[
|X − E[X]| ≥ t

]
≤ 2e−2t2/

∑
i(bi−ai)

2
.

Lemma 10: Let S ∈ Rk×d be a super-sparse sampling matrix (i.e., each row has a single nonzero
entry of value

√
d/k in a uniformly random location). Then

∀y ∈ Rd, ∥y∥2 = 1, ∥y∥∞ ≤ λ, Pr
S
[∥Sy∥22 /∈ (1± ε)] ≤ 2e−2ε2k/(d2λ4).

Exer: Prove this lemma using Hoeffding’s inequality.

Proof of Theorem 7: Was briefly discussed in class and basically follows from Lemmas 9 and
10.
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