Randomized Algorithms 2019A - Problem Set 1

Robert Krauthgamer and Moni Naor

Due: Dec. 6, 2018

1. Let $G=(V, E)$ be an undirected graph. Use direct arguments about electrical flows to prove the triangle inequality

$$
\forall u, v, w \in V, \quad R_{\mathrm{eff}}(u, w) \leq R_{\mathrm{eff}}(u, v)+R_{\mathrm{eff}}(v, w)
$$

Remark: It also follows from the triangle inequality for commute times, which we saw in class, but I ask here for a direct proof.
2. Prove that for every n-vertex graph $G=(V, E)$,

$$
\operatorname{cov}(G) \leq 2(n-1)|E|
$$

Hint: Follow a spanning tree T of the graph.
3. A random walk in a directed graph is defined by picking, at every step, a uniformly random outgoing edge, and following that edge. The hitting time $H_{u v}$ is defined analogously to undirected graphs. Show that for every n, there exists a directed n-vertex graph that is strongly connected and has two vertices u, v for which the hitting time is $H_{u v}=2^{\Omega(n)}$.

Extra credit:

4. Prove that for every $G=(V, E)$ and every $w \in V$,

$$
\operatorname{cov}_{w}(G) \geq \Omega(\log n) H_{\text {min }}
$$

where $H_{\text {min }}=\min _{u \neq v \in V} H_{u v}$ is the minimum (non-trivial) hitting time in the graph.
Hint: Let $\left\{X_{t}\right\}_{t \geq 0}$ be a random walk that starts at $X_{0}=w$, and consider for sake of analysis a random permutation $\pi_{1}, \ldots, \pi_{n-1}$ of $V \backslash\{w\}$. Define the random variable Z_{k}, for $k=$ $1, \ldots, n-1$, to be the first time by which all of π_{1}, \ldots, π_{k} were visited. Show that for all $k \geq 2$,

$$
\begin{aligned}
& \mathbb{E}\left[Z_{k}-Z_{k-1} \mid Z_{k-1}, X_{0}, \ldots, X_{Z_{k-1}}\right] \\
& \quad=\operatorname{Pr}\left[\pi_{k} \notin\left\{X_{0}, \ldots, X_{Z_{k-1}}\right\} \mid Z_{k-1}, X_{0}, \ldots, X_{Z_{k-1}}\right] \cdot H_{X_{Z_{k-1}}, \pi_{k}} .
\end{aligned}
$$

Notice that we consider the randomness of both the walk and the permutation, and condition on the walk up to time Z_{k-1}.

