Randomized Algorithms 2019A – Problem Set 3

Robert Krauthgamer and Moni Naor

Due: Jan. 17, 2019

1. Design a randomized algorithm that approximates the median of an input list $a_1, \ldots, a_n \in \mathbb{R}$ as follows. Given also $\varepsilon \in (0, \frac{1}{2})$, the algorithm should report a number a_i whose rank (position in the sorted list of a_i 's) is in the range $(\frac{1}{2} \pm \varepsilon)n$. The running time should be $O(1/\varepsilon^2)$ for (constant) high probability of success.

Hint: Sample elements at random and count how many samples have rank below $(\frac{1}{2} - \varepsilon)n$.

2. We saw in class a randomized algorithm (call it Algorithm E+) with success probability 3/4 for counting DNF solutions. (Here, success means that the output is within factor $1 \pm \varepsilon$ of |S|, the number of satisfying assignments of the input DNF formula.)

Consider now Algorithm E + +, which repeats that Algorithm E + independently $t = O(\log \frac{1}{\delta})$ times and then reports the *median* of their outputs. Prove that Algorithm E + + has success probability $1 - \delta$ (again, success means that the output is within factor $1 \pm \varepsilon$ of |S|).

Hint: Use Chernoff-Hoeffding bounds to count the number of "successes".

- 3. Suppose X_1, \ldots, X_n are chosen independently and uniformly at random from -1, 1, and let $S_t = \sum_{i=1}^t X_i$ be its prefix sum for $t \in [n]$. Notice that S_1, \ldots, S_n describes a random walk on \mathbb{Z} .
 - (a) Show that for $M = 8 \log n$,

$$\Pr\left[\max_{t\in[n]} S_t \ge M\sqrt{n}\right] \le \frac{1}{4}.\tag{1}$$

(b) Show that (1) above holds even for M = O(1) by first proving that

$$\forall b \in \mathbb{R}, \qquad \Pr\left[\max_{t \in [n]} S_t \ge b\right] \le 2\Pr\left[S_n \ge b\right].$$

4. Recall the construction from class of a coreset Y for 1-median of a set $X = \{X_1, \ldots, X_n\} \subset \mathbb{R}^d$ via Importance Sampling. Specifically, Y is a multiset of $m \ge L\varepsilon^{-2} \log \frac{1}{\delta}$ points, each sampled id from X according to the distribution given by $q(x) = \frac{s(x)}{S(X)}$, and then reweighted to $w(x) = \frac{1}{m q(x)}$. Prove that

$$\Pr[w(Y) \in (1 \pm \varepsilon)n] \ge 1 - \delta. \tag{2}$$

Hint: Show that all $x \in X$ satisfy $\frac{1}{q(x)} \leq O(n)$, and then use a concentration bound.

Extra credit:

5. Prove the "last" case in the construction of a strong coreset Y for the geometric median of X via importance sampling (called Theorem 12 in class), as follows. Suppose Y satisfies

$$w(Y) \in (1 \pm \varepsilon)n,$$

(which happens WHP by (2) above), and

$$\frac{1}{m} \sum_{y \in Y} \frac{\|y - c^*\|}{q(y)} \in (1 \pm \varepsilon) \sum_{x \in X} \|x - c^*\|,$$

(which happens WHP by Lemma 9 in class applied to the optimal median c^*). Show that

$$\forall c \notin B(c^*, \frac{1}{\varepsilon} \frac{\text{OPT}}{n}), \qquad f(Y, c) \in (1 \pm O(\varepsilon)) \ f(X, c),$$

where $f(Y,c) = \sum_{y \in Y} w(y) ||y - c||$ (and similarly for X but with unit weights).

Hint: Give upper and lower bounds that show that $f(Y,c) \approx n \|c - c^*\|$ and also $f(X,c) \approx n \|c - c^*\|$.