Randomized Algorithms 2019A - Problem Set 3

Robert Krauthgamer and Moni Naor

Due: Jan. 17, 2019

1. Design a randomized algorithm that approximates the median of an input list $a_{1}, \ldots, a_{n} \in \mathbb{R}$ as follows. Given also $\varepsilon \in\left(0, \frac{1}{2}\right.$), the algorithm should report a number a_{i} whose rank (position in the sorted list of a_{i} 's) is in the range $\left(\frac{1}{2} \pm \varepsilon\right) n$. The running time should be $O\left(1 / \varepsilon^{2}\right)$ for (constant) high probability of success.
Hint: Sample elements at random and count how many samples have rank below $\left(\frac{1}{2}-\varepsilon\right) n$.
2. We saw in class a randomized algorithm (call it Algorithm $E+$) with success probability $3 / 4$ for counting DNF solutions. (Here, success means that the output is within factor $1 \pm \varepsilon$ of $|S|$, the number of satisfying assignments of the input DNF formula.)
Consider now Algorithm $E++$, which repeats that Algorithm $E+$ independently $t=O\left(\log \frac{1}{\delta}\right)$ times and then reports the median of their outputs. Prove that Algorithm $E++$ has success probability $1-\delta$ (again, success means that the output is within factor $1 \pm \varepsilon$ of $|S|$).
Hint: Use Chernoff-Hoeffding bounds to count the number of "successes".
3. Suppose X_{1}, \ldots, X_{n} are chosen independently and uniformly at random from $-1,1$, and let $S_{t}=\sum_{i=1}^{t} X_{i}$ be its prefix sum for $t \in[n]$. Notice that S_{1}, \ldots, S_{n} describes a random walk on \mathbb{Z}.
(a) Show that for $M=8 \log n$,

$$
\begin{equation*}
\operatorname{Pr}\left[\max _{t \in[n]} S_{t} \geq M \sqrt{n}\right] \leq \frac{1}{4} . \tag{1}
\end{equation*}
$$

(b) Show that ($\mathbb{(1)}$ above holds even for $M=O(1)$ by first proving that

$$
\forall b \in \mathbb{R}, \quad \operatorname{Pr}\left[\max _{t \in[n]} S_{t} \geq b\right] \leq 2 \operatorname{Pr}\left[S_{n} \geq b\right]
$$

4. Recall the construction from class of a coreset Y for 1-median of a set $X=\left\{X_{1}, \ldots, X_{n}\right\} \subset \mathbb{R}^{d}$ via Importance Sampling. Specifically, Y is a multiset of $m \geq L \varepsilon^{-2} \log \frac{1}{\delta}$ points, each sampled iid from X according to the distribution given by $q(x)=\frac{s(x)}{S(X)}$, and then reweighted to $w(x)=\frac{1}{m q(x)}$. Prove that

$$
\begin{equation*}
\operatorname{Pr}[w(Y) \in(1 \pm \varepsilon) n] \geq 1-\delta . \tag{2}
\end{equation*}
$$

Hint: Show that all $x \in X$ satisfy $\frac{1}{q(x)} \leq O(n)$, and then use a concentration bound.

Extra credit:

5. Prove the "last" case in the construction of a strong coreset Y for the geometric median of X via importance sampling (called Theorem 12 in class), as follows. Suppose Y satisfies

$$
w(Y) \in(1 \pm \varepsilon) n
$$

(which happens WHP by ((Z) above), and

$$
\frac{1}{m} \sum_{y \in Y} \frac{\left\|y-c^{*}\right\|}{q(y)} \in(1 \pm \varepsilon) \sum_{x \in X}\left\|x-c^{*}\right\|,
$$

(which happens WHP by Lemma 9 in class applied to the optimal median c^{*}). Show that

$$
\forall c \notin B\left(c^{*}, \frac{1}{\varepsilon} \frac{\mathrm{OPT}}{n}\right), \quad f(Y, c) \in(1 \pm O(\varepsilon)) f(X, c),
$$

where $f(Y, c)=\sum_{y \in Y} w(y)\|y-c\|$ (and similarly for X but with unit weights).
Hint: Give upper and lower bounds that show that $f(Y, c) \approx n\left\|c-c^{*}\right\|$ and also $f(X, c) \approx$ $n\left\|c-c^{*}\right\|$.

