Sublinear Time and Space Algorithms 2020B - Lecture 10 Geometric Streams and Coresets*

Robert Krauthgamer

1 Geometric Streams and Coresets

Geometric stream: The input is a stream of points in \mathbb{R}^{d} denoted $P=\left\langle p_{1}, \ldots, p_{n}\right\rangle$.
Problem definition: The goal is to minimize some cost function $C_{P}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, where $C_{P}(x)$ represents the cost of using x as a solution ("center") for input P.

For example, in the Minimum Enclosing Ball (MEB) the goal is to find a ball of minimum radius that contains P. This problem is captured by the cost function

$$
C_{P}^{M E B}(x)=\max _{p \in P}\|p-x\|_{2} .
$$

Other clustering problems where a similar approach may work: enclosing the points in a box (axisparallel or not) or in a slab (between two parallel hyperplanes), or in a cylinder (the center x is replaced by a line).
Definition: A cost function C is called monotone if

$$
\forall x \in \mathbb{R}^{d}, Q \subset P, \quad C_{Q}(x) \leq C_{P}(x)
$$

Definition [Agarwal, Har-Peled, and Varadarajan, 2004]: Given a monotone C, an α coreset of P is a subset $Q \subseteq P$ such that

$$
\forall x \in \mathbb{R}^{d}, T \subset \mathbb{R}^{d}, \quad C_{Q \cup T}(x) \leq C_{P \cup T}(x) \leq \alpha \cdot C_{Q \cup T}(x)
$$

The idea is that by storing the small subset Q we can approximate the optimum for P within factor $\alpha \geq 1$, even if more points will be added later.

Plan: We will show that MEB admits a small coreset, and that small coresets (with certain properties) yield low-storage streaming algorithms.

Theorem 1: Fix $d \geq 2$ and $\varepsilon \in(0,1 / 2)$. Every $P \subset \mathbb{R}^{d}$ has a $(1+\varepsilon)$-coreset for cost function $C_{P}^{M E B}$ of size $O\left(1 / \varepsilon^{(d-1) / 2}\right)$.

[^0]Before proving the theorem, let's discuss the implications to streaming algorithms. We consider useful properties of coresets (that may hold, depending on C).

Merge Property: If Q is an α-coreset of P, and Q^{\prime} is an α^{\prime}-coreset of P^{\prime}, then $Q \cup Q^{\prime}$ is an $\left(\alpha \cdot \alpha^{\prime}\right)$-coreset of $P \cup P^{\prime}$.

Reduce Property: If Q is an α-coreset of P, and R is a β-coreset of Q, then R is an $(\alpha \beta)$-coreset of P.

Disjoint Union Property ("strong" version of merge): If Q is an α-coreset of P, and Q^{\prime} is an α^{\prime}-coreset of P^{\prime}, then $Q \cup Q^{\prime}$ is a $\max \left\{\alpha, \alpha^{\prime}\right\}$-coreset of $P \cup P^{\prime}$.
Lemma: Coresets for monotone C satisfy the Merge and Reduce properties. Coresets for $C_{P}^{M E B}$ satisfy also the Disjoint Union property.

Exer: Prove this lemma.
Theorem 2: Suppose the cost function C is monotone, admits $\left(1+\varepsilon^{\prime}\right)$-coreset of size $f\left(\varepsilon^{\prime}\right)$ for every $\varepsilon^{\prime} \in(0,1 / 2)$, and that these coresets have the the Disjoint Union property. Then there is a streaming algorithm that achieves $1+O(\varepsilon)$ approximation for the problem of minimizing C, using $O(f(\varepsilon / \log n) \cdot \log n)$ words of space.

Remark: this algorithm outputs both an estimate for the optimal cost and a near-optimal center $\tilde{x} \in \mathbb{R}^{d}$.

Remark: We (implicitly) assume that when $|P| \leq 2 f\left(\varepsilon^{\prime}\right)$ (small inputs), (i) a coreset for P as above can be computed using space $O\left(f\left(\varepsilon^{\prime}\right)\right)$, and (ii) a solution x that minimizes $C_{P}(x)$ can be computed.

Proof of Theorem 2: The algorithm uses the "merge and reduce" approach. We will first describe it as a non-streaming algorithm, based on a hierarchical partitioning of the stream.

Suppose the stream is partitioned into "blocks" of size B, which is a "buffer" size to be chosen later, and let $\varepsilon^{\prime}=\varepsilon / \log n$. Now build a binary tree on these blocks in the natural order. Specifically, at level 0 (the n / B leaves of the tree), each node i gets as input the i-th block and outputs it without processing. At level $h=1, \ldots, \log _{2}(n / B)$, the input for each node is the concatenation of its two children's outputs Q and Q^{\prime}. The node then computes a $\left(1+\varepsilon^{\prime}\right)$-coreset R for $Q \cup Q^{\prime}$, and outputs this R.

At the top level h, after the algorithm computes a final coreset \tilde{R}, it computes also an optimal $\tilde{x} \in \mathbb{R}^{d}$ and outputs this \tilde{x} and its $\operatorname{cost} C_{\tilde{R}}(\tilde{x})$.

The output of each node at level $h \geq 1$ is a subset of size $f\left(\varepsilon^{\prime}\right)$, and this bound extends also to level $h=0$ by setting $B=f\left(\varepsilon^{\prime}\right)$.

Correctness: We prove by induction that the output of every node at level h is a $\left(1+\varepsilon^{\prime}\right)^{h}$-coreset of the points fed into its descendant leaves. Indeed, consider a node at level h. Suppose it receives from its children two sets Q and Q^{\prime} that are $\left(1+\varepsilon^{\prime}\right)^{h-1}$-coresets of the respective original points P and P^{\prime}. Then by the Disjoint Union property, $Q \cup Q^{\prime}$ is a $\left(1+\varepsilon^{\prime}\right)^{h-1}$-coreset of $P \cup P^{\prime}$. By the Reduce property, this node's output R is a $\left(1+\varepsilon^{\prime}\right)^{h}$-coreset of $P \cup P^{\prime}$.

The output \tilde{x} is optimal for the final $\left(1+\varepsilon^{\prime}\right)^{h}$-coreset \tilde{R}, and thus achieves approximation factor
$\left(1+\varepsilon^{\prime}\right)^{h} \leq e^{\varepsilon^{\prime} h} \leq e^{\varepsilon} \leq 1+2 \varepsilon$.
Streaming Implementation: We will run $\log _{2}(n / B)$ algorithms in parallel, one for each level of the tree. The algorithm at each level $h \geq 1$ reads a virtual stream produced by the algorithm of level $h-1$, and produces a virtual stream for level $h+1$. It uses a buffer of size $2 B$ to store the inputs Q and Q^{\prime} from the "next" two children. When these arrive, it computes a new coreset R and outputs this R, and now the buffer is emptied and the process starts again.

The total storage requirement (for all levels) is $O(B \log (n / B))=O(f(\varepsilon / \log n) \cdot \log n)$ words of space.
QED.
Corollary 3: Minimum Enclosing Ball has a streaming algorithm that achieves $(1+\varepsilon)$-approximation with storage requirement $O\left(\frac{\log ^{(d+1) / 2} n}{\varepsilon^{(d-1) / 2}}\right)$.
Exer: Show that the particular coreset we design below for MEB, can be easily computed in a streaming fashion directly (without the "merge and reduce" approach), yielding a streaming algorithm using $O(f(\varepsilon))=O\left(\varepsilon^{(d-1) / 2}\right)$ words of space. Can you extend it to handle also deletions of points (with a little bigger space requirement)?

2 Coreset for Minimum Enclosing Ball

Grids in $\mathbb{R}^{d}:$ For non-zero vectors $u, v \in \mathbb{R}^{d}$ define $\operatorname{angle}(u, v)=\arccos \frac{\langle u, v\rangle}{\|u\|_{2}\|v\|_{2}}$.
We say that $U \subset \mathbb{R}^{d} \backslash\{0\}$ is a θ-grid (or θ-cover) if

$$
\forall x \in \mathbb{R}^{d}, \exists u \in U, \quad 0 \leq \operatorname{angle}(x, u) \leq \theta
$$

We will need the following theorem (without proof).
Theorem 4: For every $\theta>0$ there exists a θ-grid U of size $O\left(1 / \theta^{d-1}\right)$. In fact, we may assume it consists of unit-length vectors.

Proof of Theorem 1: Fix a θ-grid U (of unit-length vectors) for $\theta=\sqrt{\varepsilon}$. Given P, define

$$
Q=\bigcup_{u \in U}\{\underset{p \in P}{\operatorname{argmax}}\langle p, u\rangle\} .
$$

That is, Q stores for each direction $u \in U$ an "extreme" point in this direction (as measured by projection on u).
To prove that Q is a $\left(1+\theta^{2}\right)$-coreset, consider $x \in \mathbb{R}^{d}$ and $T \subset \mathbb{R}^{d}$, and let us show that $C_{P \cup T}(x) \leq$ $(1+\varepsilon) C_{Q \cup T}(x)$. There exists $z \in P \cup T$ that realizes the LHS, i.e., $C_{P \cup T}(x)=\|z-x\|_{2}$ (a point in $P \cup T$ that is farthest from $x)$.

We now have two cases. If $z \in T$, then clearly $\|z-x\|_{2} \leq C_{Q \cup T}(x)$.
Otherwise $(z \in P)$, there is $u \in U$ such that $0 \leq \operatorname{angle}(z-x, u) \leq \theta$. Let $q \in P$ be the point that
maximizes $\langle q, u\rangle$. Then $q \in Q$, and we get that

$$
C_{Q \cup T}(x) \geq\|q-x\|_{2} .
$$

Since $z \in P$ is a candidate for this maximization, $\langle q, u\rangle \geq\langle z, u\rangle$, and we get (recall u has unit length)

$$
\|q-x\|_{2} \geq\langle q-x, u\rangle \geq\langle z-x, u\rangle \geq \cos \theta \cdot\|z-x\|_{2} .
$$

A more geometric way to see the last inequality: let z^{\prime} be the projection of z on the line $\{x+\gamma u$: $\gamma \in \mathbb{R}\}$, and let q^{\prime} be the projection of q on the same line. Since $z \in P$ is a candidate for the maximization (projection on the line),

$$
\|q-x\|_{2} \geq\left\|q^{\prime}-x\right\|_{2} \geq\left\|z^{\prime}-x\right\|_{2} \geq \cos \theta \cdot\|z-x\|_{2},
$$

where the last inequality follow from the angle angle $(u, z-x) \leq \theta$ in the triangle x, z, z^{\prime}.
To complete the proof, recall that $\|z-x\|_{2}=C_{P \cup T}(x)$ and use $\cos \theta \geq 1-\theta^{2} / 2 \geq \frac{1}{1+\theta^{2}}$, hence $C_{Q \cup T}(x) \geq \frac{1}{1+\varepsilon} C_{P \cup T}(x)$.
Finally, use Theorem 4 to bound the size of the coreset

$$
|Q| \leq|U|=O\left(1 / \varepsilon^{(d-1) / 2}\right) .
$$

[^0]: *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

