
Sublinear Time and Space Algorithms 2020B – Lecture 10

Geometric Streams and Coresets*

Robert Krauthgamer

1 Geometric Streams and Coresets

Geometric stream: The input is a stream of points in Rd denoted P = ⟨p1, . . . , pn⟩.

Problem definition: The goal is to minimize some cost function CP : Rd → R, where CP (x)
represents the cost of using x as a solution (“center”) for input P .

For example, in the Minimum Enclosing Ball (MEB) the goal is to find a ball of minimum radius
that contains P . This problem is captured by the cost function

CMEB
P (x) = max

p∈P
∥p− x∥2.

Other clustering problems where a similar approach may work: enclosing the points in a box (axis-
parallel or not) or in a slab (between two parallel hyperplanes), or in a cylinder (the center x is
replaced by a line).

Definition: A cost function C is called monotone if

∀x ∈ Rd, Q ⊂ P, CQ(x) ≤ CP (x).

Definition [Agarwal, Har-Peled, and Varadarajan, 2004]: Given a monotone C, an α-
coreset of P is a subset Q ⊆ P such that

∀x ∈ Rd, T ⊂ Rd, CQ∪T (x) ≤ CP∪T (x) ≤ α · CQ∪T (x).

The idea is that by storing the small subset Q we can approximate the optimum for P within factor
α ≥ 1, even if more points will be added later.

Plan: We will show that MEB admits a small coreset, and that small coresets (with certain
properties) yield low-storage streaming algorithms.

Theorem 1: Fix d ≥ 2 and ε ∈ (0, 1/2). Every P ⊂ Rd has a (1 + ε)-coreset for cost function
CMEB
P of size O(1/ε(d−1)/2).

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Before proving the theorem, let’s discuss the implications to streaming algorithms. We consider
useful properties of coresets (that may hold, depending on C).

Merge Property: If Q is an α-coreset of P , and Q′ is an α′-coreset of P ′, then Q ∪ Q′ is an
(α · α′)-coreset of P ∪ P ′.

Reduce Property: If Q is an α-coreset of P , and R is a β-coreset of Q, then R is an (αβ)-coreset
of P .

Disjoint Union Property (“strong” version of merge): If Q is an α-coreset of P , and Q′ is
an α′-coreset of P ′, then Q ∪Q′ is a max{α, α′}-coreset of P ∪ P ′.

Lemma: Coresets for monotone C satisfy the Merge and Reduce properties. Coresets for CMEB
P

satisfy also the Disjoint Union property.

Exer: Prove this lemma.

Theorem 2: Suppose the cost function C is monotone, admits (1 + ε′)-coreset of size f(ε′) for
every ε′ ∈ (0, 1/2), and that these coresets have the the Disjoint Union property. Then there is a
streaming algorithm that achieves 1 +O(ε) approximation for the problem of minimizing C, using
O(f(ε/ log n) · log n) words of space.

Remark: this algorithm outputs both an estimate for the optimal cost and a near-optimal center
x̃ ∈ Rd.

Remark: We (implicitly) assume that when |P | ≤ 2f(ε′) (small inputs), (i) a coreset for P as
above can be computed using space O(f(ε′)), and (ii) a solution x that minimizes CP (x) can be
computed.

Proof of Theorem 2: The algorithm uses the “merge and reduce” approach. We will first
describe it as a non-streaming algorithm, based on a hierarchical partitioning of the stream.

Suppose the stream is partitioned into “blocks” of size B, which is a “buffer” size to be chosen later,
and let ε′ = ε/ log n. Now build a binary tree on these blocks in the natural order. Specifically, at
level 0 (the n/B leaves of the tree), each node i gets as input the i-th block and outputs it without
processing. At level h = 1, . . . , log2(n/B), the input for each node is the concatenation of its two
children’s outputs Q and Q′. The node then computes a (1+ ε′)-coreset R for Q∪Q′, and outputs
this R.

At the top level h, after the algorithm computes a final coreset R̃, it computes also an optimal
x̃ ∈ Rd and outputs this x̃ and its cost CR̃(x̃).

The output of each node at level h ≥ 1 is a subset of size f(ε′), and this bound extends also to
level h = 0 by setting B = f(ε′).

Correctness: We prove by induction that the output of every node at level h is a (1 + ε′)h-coreset
of the points fed into its descendant leaves. Indeed, consider a node at level h. Suppose it receives
from its children two sets Q and Q′ that are (1 + ε′)h−1-coresets of the respective original points
P and P ′. Then by the Disjoint Union property, Q ∪Q′ is a (1 + ε′)h−1-coreset of P ∪ P ′. By the
Reduce property, this node’s output R is a (1 + ε′)h-coreset of P ∪ P ′.

The output x̃ is optimal for the final (1 + ε′)h-coreset R̃, and thus achieves approximation factor

2

(1 + ε′)h ≤ eε
′h ≤ eε ≤ 1 + 2ε.

Streaming Implementation: We will run log2(n/B) algorithms in parallel, one for each level of the
tree. The algorithm at each level h ≥ 1 reads a virtual stream produced by the algorithm of level
h−1, and produces a virtual stream for level h+1. It uses a buffer of size 2B to store the inputs Q
and Q′ from the “next” two children. When these arrive, it computes a new coreset R and outputs
this R, and now the buffer is emptied and the process starts again.

The total storage requirement (for all levels) is O(B log(n/B)) = O(f(ε/ log n) · log n) words of
space.

QED.

Corollary 3: Minimum Enclosing Ball has a streaming algorithm that achieves (1+ε)-approximation

with storage requirement O(log
(d+1)/2 n

ε(d−1)/2).

Exer: Show that the particular coreset we design below for MEB, can be easily computed in
a streaming fashion directly (without the “merge and reduce” approach), yielding a streaming
algorithm using O(f(ε)) = O(ε(d−1)/2) words of space. Can you extend it to handle also deletions
of points (with a little bigger space requirement)?

2 Coreset for Minimum Enclosing Ball

Grids in Rd: For non-zero vectors u, v ∈ Rd define angle(u, v) = arccos ⟨u,v⟩
∥u∥2∥v∥2 .

We say that U ⊂ Rd \ {0} is a θ-grid (or θ-cover) if

∀x ∈ Rd, ∃u ∈ U, 0 ≤ angle(x, u) ≤ θ.

We will need the following theorem (without proof).

Theorem 4: For every θ > 0 there exists a θ-grid U of size O(1/θd−1). In fact, we may assume
it consists of unit-length vectors.

Proof of Theorem 1: Fix a θ-grid U (of unit-length vectors) for θ =
√
ε. Given P , define

Q =
∪
u∈U

{argmax
p∈P

⟨p, u⟩}.

That is, Q stores for each direction u ∈ U an “extreme” point in this direction (as measured by
projection on u).

To prove that Q is a (1+θ2)-coreset, consider x ∈ Rd and T ⊂ Rd, and let us show that CP∪T (x) ≤
(1 + ε)CQ∪T (x). There exists z ∈ P ∪ T that realizes the LHS, i.e., CP∪T (x) = ∥z − x∥2 (a point
in P ∪ T that is farthest from x).

We now have two cases. If z ∈ T , then clearly ∥z − x∥2 ≤ CQ∪T (x).

Otherwise (z ∈ P), there is u ∈ U such that 0 ≤ angle(z − x, u) ≤ θ. Let q ∈ P be the point that

3

maximizes ⟨q, u⟩. Then q ∈ Q, and we get that

CQ∪T (x) ≥ ∥q − x∥2.

Since z ∈ P is a candidate for this maximization, ⟨q, u⟩ ≥ ⟨z, u⟩, and we get (recall u has unit
length)

∥q − x∥2 ≥ ⟨q − x, u⟩ ≥ ⟨z − x, u⟩ ≥ cos θ · ∥z − x∥2.

A more geometric way to see the last inequality: let z′ be the projection of z on the line {x+ γu :
γ ∈ R}, and let q′ be the projection of q on the same line. Since z ∈ P is a candidate for the
maximization (projection on the line),

∥q − x∥2 ≥ ∥q′ − x∥2 ≥ ∥z′ − x∥2 ≥ cos θ · ∥z − x∥2,

where the last inequality follow from the angle angle(u, z − x) ≤ θ in the triangle x, z, z′.

To complete the proof, recall that ∥z − x∥2 = CP∪T (x) and use cos θ ≥ 1 − θ2/2 ≥ 1
1+θ2

, hence

CQ∪T (x) ≥ 1
1+εCP∪T (x).

Finally, use Theorem 4 to bound the size of the coreset

|Q| ≤ |U | = O(1/ε(d−1)/2).

4

