Sublinear Time and Space Algorithms 2020B - Lecture 2 Reservoir Sampling, Frequency Vectors, Distinct Elements, Frequency Moments and the AMS algorithm*

Robert Krauthgamer

1 Reservoir Sampling

Problem definition: Pick a uniformly random item from the stream.
Reservoir Sampling [Vitter, 1985]:

1. Init: $s=$ null
2. Update: When the next item σ_{j} is read, toss a biased coin and with probability $1 / j$ let $s=\sigma_{j}$ in the stream (note we need to maintain j)
3. Output: s

Lemma: Assuming every $\sigma_{j} \in[n]$, this algorithm uses storage $O(\log (n+m))$ and its output is a uniform item from the stream, i.e., each item σ_{j} (each position) ends up being output with the same probability $1 / m$.

Note that items appearing many times are output with high probability.
Exer: Prove this lemma.
Exer: Design a streaming algorithm that at any point m (not known in advance) receives a query $S \subset[n]$ and outputs and estimate what fraction of items in the stream belong to S within additive error ϵ. Note that S is given only at query time (not in advance).

Hint: Maintain $O\left(1 / \epsilon^{2}\right)$ random samples and use them to estimate the fraction in S.
Exer: Design an algorithm that samples s items without replacement from an input stream $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right)$. The algorithm's memory requirement should be $O(s)$ words (s is a parameter known in advance). Prove that the algorithm's output has the correct distribution.

Hint: The goal is essentially to sample s distinct indices $\left(i_{1}<\cdots<i_{s}\right)$ uniformly at random. In contrast, executing the Reservoir Sampling algorithm s times in parallel gives k samples with

[^0]replacement, i.e., the same $i \in[m]$ could be reported more than once.

2 Frequency-vector model

A famous and common setting for data-stream problems lets the input be a stream of m items from a universe $[n]=\{1, \ldots, n\}$; the stream $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ implicitly defines a frequency vector $x \in \mathbb{R}^{n}$, where coordinate x_{i} counts the frequency of item $i \in[n]$ in the stream.

Example: The sequence of IP addresses observed by a router. Here, $n=2^{32}$ is huge but the vector x is sparse (many zeros).

Remark: In this setting, it is common to assume $m=\operatorname{poly}(n)$, hence one machine word can store value in the ranges $[n]$ and $[m]$. The usual goal is to achieve storage requirement polylog(n).

Example Problems: Two classical computational problems ask for the most frequent item and for the number of distinct items, which can be expressed in terms of the frequency vector x as $\|x\|_{\infty}$ and $\|x\|_{0}$, respectively.

Suppose we are guaranteed that one item appears more than half the time, i.e., there exists (unknown) $i \in[n]$ such that $x_{i}>m / 2$. Design a streaming algorithm with $O(\log n)$ storage that finds this item i. Hint: Store only two items.

Can you provide a $(1+\epsilon)$-approximation to its frequency? Can you extend it to every k (i.e., frequency $>m / k)$?

Variations and further questions (we will discuss only some of these):

- $\|x\|_{0}$ (distinct elements)
- heavy hitters $\left(\|x\|_{\infty}\right.$ when it is guarantee to be "large")
- $\|x\|_{2}$ (reflects the probability that two random items from the stream are equal)
- more generally $\|x\|_{p}$
- ℓ_{p}-sampling
- item deletions (turnstile updates to x), now even $\|x\|_{1}$ is interesting
- sliding window (always refer to the w most recent items, for a parameter w known in advance)
- multiple passes over the input

3 Distinct Elements

Problem Definition: Let $x \in \mathbb{R}^{n}$ be the frequency vector of the input stream, and let $\|x\|_{0}=$ $\left|\left\{i \in[n]: x_{i}>0\right\}\right|$ be the number of distinct elements in the stream. It's also called the F_{0}-moment of σ.

Naive algorithms: Storage $O(n)$ (a bit for each possible item) or $O(m \log n)$ (list of seen items) bits.

Algorithm FM [Flajolet and Martin, 1985]:

It employs a "hash" function $h:[n] \rightarrow[0,1]$ where each $h(i)$ has an independent uniform distribution on $[0,1]$. (This is an "idealized" description, because even though we can generate n truly random bits, we cannot store and re-use them.)
Idea: We will have exactly $\mathrm{d}^{*}=\|x\|_{0}$ distinct hashes, and since they are random, by symmetry their minimum should be around $1 /\left(\mathrm{d}^{*}+1\right)$.

1. Init: $z=1$ and a hash function h
2. Update: When item $i \in[n]$ is seen, update $z=\min \{z, h(i)\}$
3. Output: $1 / z-1$

Storage requirement: $O(1)$ words (not including randomness); we will discuss implementation issues later.

Denote by $\mathrm{d}^{*}:=\|x\|_{0}$ the true value, and let Z denote the final value of z (to emphasize it is a random variable).

Lemma 1: $\mathbb{E}[Z]=1 /\left(\mathrm{d}^{*}+1\right)$.
Note: This is the expectation of Z and not of its inverse $1 / Z$ (as used in the output).
Proof: We will use a trick to avoid the integral calculation (which is actually straightforward). Choose an additional random value X uniformly from $[0,1]$ (for sake of analysis only), then by the law of total expectation

$$
\mathbb{E}[Z]=\underset{Z}{\mathbb{E}}\left[\operatorname{Pr}_{X}[X<Z \mid Z]\right]=\underset{Z}{\mathbb{E}}\left[\underset{X}{\mathbb{E}}\left[\mathbb{1}_{\{X<Z\}} \mid Z\right]\right]=\mathbb{E}\left[\mathbb{1}_{\{X<Z\}}\right]=1 /\left(\mathrm{d}^{*}+1\right) .
$$

Lemma 2: $\mathbb{E}\left[Z^{2}\right]=\frac{2}{\left(d^{*}+1\right)\left(d^{*}+2\right)}$ and thus $\operatorname{Var}[Z] \leq(\mathbb{E}[Z])^{2}$.
Exer: Prove this lemma using the above trick with two new random values (and/or prove both by calculating the integral).

Algorithm FM+:

1. Run $k=O\left(1 / \varepsilon^{2}\right)$ independent copies of algorithm FM, keeping in memory Z_{1}, \ldots, Z_{k} (and functions $\left.h^{1}, \ldots, h^{k}\right)$
2. Output: $1 / \bar{Z}-1$ where $\bar{Z}=\frac{1}{k} \sum_{i=1}^{k} Z_{i}$

As before, averaging reduces the standard deviation by factor \sqrt{k}, and then applying Chebyshev's inequality to \bar{Z}, WHP

$$
\bar{Z} \in(1 \pm 3 / \sqrt{k}) \mathbb{E}[Z]=(1 \pm 3 / \sqrt{k}) \cdot 1 /\left(\mathrm{d}^{*}+1\right)
$$

in which case its inverse is $1 / \bar{Z} \in(1 \pm \varepsilon)\left(\mathrm{d}^{*}+1\right)$.
Storage requirement: $O(k)$ words (not including randomness); we will discuss implementation issues later.

Remark: The storage can be improved similarly to the probabilistic counting. It suffices to store a $(1+\varepsilon)$-approximation of z, which can reduce the number of bits from $O(\log n)$ (in a "typical"
implementation of the real-valued hashes) to $O(\log \log n)$. A particularly efficient 2-approximation is to store the number of zeros in the beginning of z^{\prime} s binary representation.

Remark: Notice this algorithm does not work under deletions.

4 Frequency Moments and the AMS algorithm

ℓ_{p}-norm problem: Let $x \in \mathbb{R}^{n}$ be the frequency vector of the input stream, and fix a parameter $p>0$.

Goal: estimate its ℓ_{p}-norm $\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$. We focus on $p=2$.
Theorem 1 [Alon, Matthias, and Szegedy, 1996]: One can estimate the ℓ_{2} norm of a frequency vector $x \in \mathbb{R}^{n}$ within factor $1+\varepsilon$ [with high constant probability] using storage requirement of $s=O\left(\varepsilon^{-2}\right)$ words. In fact, the algorithm uses a linear sketch of dimension s.
Algorithm AMS (also known as Tug-of-War):

1. Init: choose r_{1}, \ldots, r_{n} independently at random from $\{-1,+1\}$
2. Update: maintain $Z=\sum_{i} r_{i} x_{i}$
3. Output: to estimate $\|x\|_{2}^{2}$ report Z^{2}

The sketch Z is linear, hence can be updated easily.
Storage requirement: $O(\log (n m))$ bits, not including randomness; we will discuss implementation issues a bit later.

Will be continued next class.

[^0]: ${ }^{*}$ These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

