
Sublinear Time and Space Algorithms 2020B – Lecture 2

Reservoir Sampling, Frequency Vectors, Distinct Elements,

Frequency Moments and the AMS algorithm*

Robert Krauthgamer

1 Reservoir Sampling

Problem definition: Pick a uniformly random item from the stream.

Reservoir Sampling [Vitter, 1985]:

1. Init: s = null

2. Update: When the next item σj is read, toss a biased coin and with probability 1/j let s = σj
in the stream (note we need to maintain j)

3. Output: s

Lemma: Assuming every σj ∈ [n], this algorithm uses storage O(log(n +m)) and its output is
a uniform item from the stream, i.e., each item σj (each position) ends up being output with the
same probability 1/m.

Note that items appearing many times are output with high probability.

Exer: Prove this lemma.

Exer: Design a streaming algorithm that at any point m (not known in advance) receives a query
S ⊂ [n] and outputs and estimate what fraction of items in the stream belong to S within additive
error ϵ. Note that S is given only at query time (not in advance).

Hint: Maintain O(1/ϵ2) random samples and use them to estimate the fraction in S.

Exer: Design an algorithm that samples s items without replacement from an input stream
σ = (σ1, . . . , σm). The algorithm’s memory requirement should be O(s) words (s is a parameter
known in advance). Prove that the algorithm’s output has the correct distribution.

Hint: The goal is essentially to sample s distinct indices (i1 < · · · < is) uniformly at random.
In contrast, executing the Reservoir Sampling algorithm s times in parallel gives k samples with

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

replacement, i.e., the same i ∈ [m] could be reported more than once.

2 Frequency-vector model

A famous and common setting for data-stream problems lets the input be a stream of m items
from a universe [n] = {1, . . . , n}; the stream σ = (σ1, . . . , σm) implicitly defines a frequency vector
x ∈ Rn, where coordinate xi counts the frequency of item i ∈ [n] in the stream.

Example: The sequence of IP addresses observed by a router. Here, n = 232 is huge but the
vector x is sparse (many zeros).

Remark: In this setting, it is common to assume m = poly(n), hence one machine word can
store value in the ranges [n] and [m]. The usual goal is to achieve storage requirement polylog(n).

Example Problems: Two classical computational problems ask for the most frequent item and
for the number of distinct items, which can be expressed in terms of the frequency vector x as
∥x∥∞ and ∥x∥0, respectively.

Suppose we are guaranteed that one item appears more than half the time, i.e., there exists (un-
known) i ∈ [n] such that xi > m/2. Design a streaming algorithm with O(log n) storage that finds
this item i. Hint: Store only two items.

Can you provide a (1 + ϵ)-approximation to its frequency? Can you extend it to every k (i.e.,
frequency > m/k)?

Variations and further questions (we will discuss only some of these):

� ∥x∥0 (distinct elements)

� heavy hitters (∥x∥∞ when it is guarantee to be “large”)

� ∥x∥2 (reflects the probability that two random items from the stream are equal)

� more generally ∥x∥p
� ℓp-sampling

� item deletions (turnstile updates to x), now even ∥x∥1 is interesting

� sliding window (always refer to the w most recent items, for a parameter w known in advance)

� multiple passes over the input

3 Distinct Elements

Problem Definition: Let x ∈ Rn be the frequency vector of the input stream, and let ∥x∥0 =
|{i ∈ [n] : xi > 0}| be the number of distinct elements in the stream. It’s also called the F0-moment
of σ.

Naive algorithms: Storage O(n) (a bit for each possible item) or O(m log n) (list of seen items)
bits.

2

Algorithm FM [Flajolet and Martin, 1985]:

It employs a “hash” function h : [n] → [0, 1] where each h(i) has an independent uniform distri-
bution on [0, 1]. (This is an “idealized” description, because even though we can generate n truly
random bits, we cannot store and re-use them.)

Idea: We will have exactly d* = ∥x∥0 distinct hashes, and since they are random, by symmetry
their minimum should be around 1/(d*+1).

1. Init: z = 1 and a hash function h

2. Update: When item i ∈ [n] is seen, update z = min{z, h(i)}

3. Output: 1/z − 1

Storage requirement: O(1) words (not including randomness); we will discuss implementation issues
later.

Denote by d* := ∥x∥0 the true value, and let Z denote the final value of z (to emphasize it is a
random variable).

Lemma 1: E[Z] = 1/(d*+1).

Note: This is the expectation of Z and not of its inverse 1/Z (as used in the output).

Proof: We will use a trick to avoid the integral calculation (which is actually straightforward).
Choose an additional random value X uniformly from [0, 1] (for sake of analysis only), then by the
law of total expectation

E[Z] = E
Z
[Pr
X
[X < Z | Z]] = E

Z
[E
X
[1{X<Z} | Z]] = E[1{X<Z}] = 1/(d*+1).

Lemma 2: E[Z2] = 2
(d∗+1)(d∗+2) and thus Var[Z] ≤ (E[Z])2.

Exer: Prove this lemma using the above trick with two new random values (and/or prove both
by calculating the integral).

Algorithm FM+:

1. Run k = O(1/ε2) independent copies of algorithm FM, keeping in memory Z1, . . . , Zk (and
functions h1, . . . , hk)

2. Output: 1/Z̄ − 1 where Z̄ = 1
k

∑k
i=1 Zi

As before, averaging reduces the standard deviation by factor
√
k, and then applying Chebyshev’s

inequality to Z̄, WHP

Z̄ ∈ (1± 3/
√
k)E[Z] = (1± 3/

√
k) · 1/(d*+1)

in which case its inverse is 1/Z̄ ∈ (1± ε)(d*+1).

Storage requirement: O(k) words (not including randomness); we will discuss implementation issues
later.

Remark: The storage can be improved similarly to the probabilistic counting. It suffices to store
a (1 + ε)-approximation of z, which can reduce the number of bits from O(log n) (in a “typical”

3

implementation of the real-valued hashes) to O(log log n). A particularly efficient 2-approximation
is to store the number of zeros in the beginning of z′s binary representation.

Remark: Notice this algorithm does not work under deletions.

4 Frequency Moments and the AMS algorithm

ℓp-norm problem: Let x ∈ Rn be the frequency vector of the input stream, and fix a parameter
p > 0.

Goal: estimate its ℓp-norm ∥x∥p = (
∑

i|xi|p)1/p. We focus on p = 2.

Theorem 1 [Alon, Matthias, and Szegedy, 1996]: One can estimate the ℓ2 norm of a fre-
quency vector x ∈ Rn within factor 1+ε [with high constant probability] using storage requirement
of s = O(ε−2) words. In fact, the algorithm uses a linear sketch of dimension s.

Algorithm AMS (also known as Tug-of-War):

1. Init: choose r1, . . . , rn independently at random from {−1,+1}

2. Update: maintain Z =
∑

i rixi

3. Output: to estimate ∥x∥22 report Z2

The sketch Z is linear, hence can be updated easily.

Storage requirement: O(log(nm)) bits, not including randomness; we will discuss implementation
issues a bit later.

Will be continued next class.

4

