Sublinear Time and Space Algorithms 2020B - Lecture 7 Basis Pursuit (cont'd) and Iterative Hard Thresholding*

Robert Krauthgamer

1 Compressed Sensing via Basis Pursuit (cont'd)

Last time we started proving the theorem below, but it remained to prove the two main lemmas below.

Theorem 2 [Candes, Romberg and Tao [2004], and Donoho [2004]: There is a polynomialtime algorithm that given a matrix $A \in \mathbb{R}^{m \times n}$ which is $(2 k, \varepsilon)$-RIP for $1+\varepsilon<\sqrt{2}$, together with $y=A x$ for some (unknown) $x \in \mathbb{R}^{n}$, computes $\tilde{x} \in \mathbb{R}^{n}$ satisfying

$$
\|x-\tilde{x}\|_{2} \leq O(1 / \sqrt{k})\left\|x_{t a i l(k)}\right\|_{1} .
$$

Lemma 2a: $\left\|h_{T_{0} \cup T_{1}}\right\|_{2} \leq O(1 / \sqrt{k})\left\|x_{T_{0}^{c}}\right\|_{1}$.
Lemma 2b+: $\quad\left\|h_{\left(T_{0} \cup T_{1}\right)^{c}}\right\|_{2} \leq \sum_{j \geq 2}\left\|h_{T_{j}}\right\|_{2} \leq \frac{2}{\sqrt{k}} \cdot\left\|x_{T_{0}^{c}}\right\|_{1}+\left\|h_{T_{0} \cup T_{1}}\right\|_{2}$.
Proof of Lemma 2b+: The first inequality follows from $h_{\left(T_{0} \cup T_{1}\right)^{c}}=\sum_{j \geq 2} h_{T_{j}}$ and the triangle inequality.

The second inequality was seen in class using the so-called "shelling argument", and then using that $\tilde{x}=x-h$ is a minimizer of the LP to expand $\|x\|_{1} \geq\|\tilde{x}\|_{1}$.
To prove Lemma 2a we need another lemma.
Lemma 2d: Suppose $h^{\prime}, h^{\prime \prime}$ are supported on disjoint sets $T^{\prime}, T^{\prime \prime} \subset[n]$ respectively, and A is $\left(\left|T^{\prime}\right|+\left|T^{\prime \prime}\right|, \varepsilon_{0}\right)$-RIP. Then

$$
\left|\left\langle A h^{\prime}, A h^{\prime \prime}\right\rangle\right| \leq \varepsilon_{0}\left\|h^{\prime}\right\|_{2}\left\|h^{\prime \prime}\right\|_{2}
$$

Exer: Prove this lemma.
Hint: First assume WLOG that $h^{\prime}, h^{\prime \prime}$ are unit vectors. Then apply the formula $\|u+v\|_{2}^{2}-\|u-v\|_{2}^{2}=$ $4\langle u, v\rangle$ to $u=A h^{\prime}$ and $v=A h^{\prime \prime}$.

[^0]Proof of Lemma 2a: Was seen in class. The idea is to analyze the norm of $A h_{T_{0} \cup T_{1}}$ (instead of that of $h_{T_{0} \cup T_{1}}$), using Lemma 2d, to show

$$
(1-\varepsilon)\left\|h_{T_{0} \cup T_{1}}\right\|_{2}^{2} \leq\left\|A h_{T_{0} \cup T_{1}}\right\|_{2}^{2} \leq \varepsilon \sqrt{2}\left\|h_{T_{0} \cup T_{1}}\right\|_{2} \sum_{j \geq 2}\left\|h_{T_{j}}\right\|_{2},
$$

then plug in Lemma $2 \mathrm{~b}+$, and rearrange.

2 Iterative Hard Thresholding (IHT)

We will now see a different model of Compressed Sensing, where the error/noise is introduced after the measurement.

Theorem 3: Let $A \in \mathbb{R}^{m \times n}$ be ($3 k, \varepsilon$)-RIP for $\varepsilon<0.1$. Then given $y=A x+e$ for an (unknown) k-sparse vector $x \in \mathbb{R}^{n}$ and some noise vector $e \in \mathbb{R}^{n}$, one can recover in polynomial time an estimate \hat{x} such that $\|\hat{x}-x\|_{2} \leq O(1)\|e\|_{2}$.

Henceforth, all norms are ℓ_{2} norms.
Basic intuition: The algorithm initially computes $z=A^{T} y$, and takes $z_{\text {top }(k)}$.
Why is this effective? We expect that $z=A^{T} A x+A^{T} e \approx x$, because $A^{T} A x \approx x$ and $A^{T} e$ should be small noise. We will give a formal bound in Lemma 3a below.

The error is then reduced via iterations on the "residual error" in x.

Algorithm IHT:

1. init: $z^{(0)} \leftarrow A^{T} y$, then let $x^{(0)} \leftarrow z_{\text {top }(k)}^{(0)}$
2. for $t=1, \ldots, l=O\left(\log \frac{\|x\|}{\|e\|}\right)$:
3. compute $z^{(t)} \leftarrow x^{(t-1)}+A^{T}\left(y-A x^{(t-1)}\right)$, then let $x^{(t)} \leftarrow z_{\text {top }(k)}^{(t)}$.
4. output $\hat{x}=x^{(t)}$

Lemma 3a (initialization):

$$
\left\|x^{(0)}-x\right\| \leq \frac{1}{4}\|x\|+2\|e\| .
$$

Lemma 3b (iterative improvement): For every $t \geq 1$,

$$
\left\|x^{(t)}-x\right\| \leq \frac{1}{4}\left\|x^{(t-1)}-x\right\|+5\|e\| .
$$

Proof of Theorem 3: As discussed in class, it follows easily from Lemmas 3a and 3b.
Lemma 3c: Let $S \supset \operatorname{supp}(x),|S|=3 k$. Then

$$
\left\|\left(z^{(0)}-x\right)_{S}\right\| \leq \varepsilon\|x\|+2\|e\| .
$$

Proof: Since $A x=A_{S} x_{S}$ and since A is $(3 k, \varepsilon)$-RIP,

$$
\begin{array}{rlr}
\left\|(z-x)_{S}\right\| & =\left\|A_{S}^{T}(A x+e)-x_{S}\right\| & \\
& \leq\left\|\left(A_{S}^{T} A_{S}-I\right) x_{S}\right\|+\left\|A_{S}^{T} e\right\| & \text { (triangle inequality) } \\
& \leq\left\|A_{S}^{T} A_{S}-I\right\|\left\|x_{S}\right\|+\left\|A_{S}^{T}\right\|\|e\| & \text { (operator norm) } \\
& \leq \varepsilon\|x\|+2\|e\|, & \text { (RIP) } \tag{RIP}
\end{array}
$$

where we bounded $\left\|A_{S}^{T}\right\|=\left\|A_{S}\right\|=\sup \left\{\left\|A_{S} v\right\|:\|v\|=1\right\} \leq(1+\varepsilon)^{1 / 2} \leq 2$.
Lemma 3d: Let $z \in \mathbb{R}^{n}$ and let $T \subset[n]$ be its k heaviest coordinates. Then

$$
\left\|z_{T}-x\right\|^{2} \leq 5\left\|(z-x)_{T \cup \operatorname{supp}(x)}\right\|^{2} .
$$

Remark: It actually holds for every $z \in \mathbb{R}^{n}$, not only for $z^{(0)}=A^{T} y$.
Proof: Denote $H=\operatorname{supp}(x)$.
Coordinates $i \in T \cap H$ contribute $\left(z_{i}-x_{i}\right)^{2}$ to the LHS, and 5 times that to RHS.
Coordinates $i \notin T \cup H$ contribute 0 to LHS, and nonnegatively to RHS.
Now pair each $i \in H \backslash T$ with $j \in T \backslash H$ ordered by magnitude, then $\left|z_{i}\right| \leq\left|z_{j}\right|$. By considering what each pair contributes to each side, it suffices to show $x_{i}^{2}+z_{j}^{2} \leq 5\left[\left(z_{i}-x_{i}\right)^{2}+z_{j}^{2}\right]$.
If $\left|z_{i}\right|>\left|x_{i}\right| / 2$, then $x_{i}^{2} \leq 4 z_{i}^{2} \leq 4 z_{j}^{2}$ and we're done.
Otherwise $\left|z_{i}\right| \leq\left|x_{i}\right| / 2$, then $5\left(x_{i}-z_{i}\right)^{2} \geq 5\left(x_{i} / 2\right)^{2}$ and we're done.
QED
Proof of Lemma 3a: Recall $z^{(0)}=A^{T} y$, and let $T \subset[n]$ be its k heaviest coordinates. Then

$$
\begin{align*}
\left\|z_{T}^{(0)}-x\right\| & \leq \sqrt{5}\left\|\left(z^{(0)}-x\right)_{T \cup \operatorname{supp}(x)}\right\| \tag{Lemma3d}\\
& \leq \sqrt{5}[\varepsilon\|x\|+2\|e\|] \tag{Lemma3c}\\
& \leq \frac{1}{4}\|x\|+5\|e\| .
\end{align*}
$$

QED
Proof of Lemma 3b: We did not have time in class, but here it is.
For sake of analysis, consider a "hypothetical" input where we subtract the previous iteration:

$$
\begin{aligned}
x^{\prime} & =x-x^{(t-1)} \quad \Rightarrow \quad \operatorname{supp}\left(x^{\prime}\right) \subseteq \operatorname{supp}(x) \cup \operatorname{supp}\left(x^{(t-1)}\right) & & (\text { has size } \leq 2 k) \\
y^{\prime} & =A x^{\prime}+e \quad \Rightarrow \quad y^{\prime}=A\left(x-x^{(t-1)}\right)+e=y-A x^{(t-1)} & & \left(\text { line } 3 \text { uses this } y^{\prime}\right) \\
z^{\prime} & =A^{T} y^{\prime} . & &
\end{aligned}
$$

Using this notation, we can rewrite line 3 as $z^{(t)} \leftarrow x^{(t-1)}+z^{\prime}$, and

$$
z^{(t)}-x=x^{(t-1)}+z^{\prime}-x=z^{\prime}-x^{\prime} .
$$

Analogously to the proof of Lemma 3a:

$$
\begin{array}{rlr}
\left\|x^{(t)}-x\right\| & =\left\|z_{T^{(t)}}^{(t)}-x\right\| & \text { (denote } \left.T^{(t)}=\operatorname{supp}\left(x^{(t)}\right)\right) \\
& \leq \sqrt{5}\left\|\left(z^{(t)}-x\right)_{T^{(t)} \cup \operatorname{supp}(x)}\right\| & \left(\text { Lemma 3d for } z^{(t)}\right) \\
& \leq \sqrt{5}\left\|\left(z^{\prime}-x^{\prime}\right)_{T^{(t)} \cup \operatorname{supp}(x) \cup \operatorname{supp}\left(x^{(t-1)}\right)}\right\| & (\text { rewrite as above }) \\
& \leq \sqrt{5}\left[\varepsilon\left\|x^{\prime}\right\|+2\|e\|\right] & \left(\text { Lemma 3c for } x^{\prime}, z^{\prime}\right) \\
& \leq \frac{1}{4}\left\|x-z_{T}\right\|+5\|e\| . &
\end{array}
$$

QED
Theorem 4 [L_{1}-minimization Algorithm]: A guarantee similar to Theorem 3 (using RIP matrix) can be obtained by setting $b \geq\|e\|$ and solving the convex program

$$
\hat{x}=\min \left\{\|z\|_{1}:\|A z\|_{2} \leq b\right\}
$$

We will not see the proof.

[^0]: *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

