
Sublinear Time and Space Algorithms 2020B – Lecture 7

Basis Pursuit (cont’d) and Iterative Hard Thresholding*

Robert Krauthgamer

1 Compressed Sensing via Basis Pursuit (cont’d)

Last time we started proving the theorem below, but it remained to prove the two main lemmas
below.

Theorem 2 [Candes, Romberg and Tao [2004], and Donoho [2004]: There is a polynomial-
time algorithm that given a matrix A ∈ Rm×n which is (2k, ε)-RIP for 1 + ε <

√
2, together with

y = Ax for some (unknown) x ∈ Rn, computes x̃ ∈ Rn satisfying

∥x− x̃∥2 ≤ O(1/
√
k)∥xtail(k)∥1.

Lemma 2a: ∥hT0∪T1∥2 ≤ O(1/
√
k)∥xT c

0
∥1.

Lemma 2b+: ∥h(T0∪T1)c∥2 ≤
∑

j≥2∥hTj∥2 ≤ 2√
k
· ∥xT c

0
∥1 + ∥hT0∪T1∥2.

Proof of Lemma 2b+: The first inequality follows from h(T0∪T1)c =
∑

j≥2 hTj and the triangle
inequality.

The second inequality was seen in class using the so-called “shelling argument”, and then using
that x̃ = x− h is a minimizer of the LP to expand ∥x∥1 ≥ ∥x̃∥1.

To prove Lemma 2a we need another lemma.

Lemma 2d: Suppose h′, h′′ are supported on disjoint sets T ′, T ′′ ⊂ [n] respectively, and A is
(|T ′|+ |T ′′|, ε0)-RIP. Then

|⟨Ah′, Ah′′⟩| ≤ ε0∥h′∥2∥h′′∥2.

Exer: Prove this lemma.

Hint: First assume WLOG that h′, h′′ are unit vectors. Then apply the formula ∥u+v∥22−∥u−v∥22 =
4⟨u, v⟩ to u = Ah′ and v = Ah′′.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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Proof of Lemma 2a: Was seen in class. The idea is to analyze the norm of AhT0∪T1 (instead of
that of hT0∪T1), using Lemma 2d, to show

(1− ε)∥hT0∪T1∥22 ≤ ∥AhT0∪T1∥22 ≤ ε
√
2∥hT0∪T1∥2

∑
j≥2

∥hTj∥2,

then plug in Lemma 2b+, and rearrange.

2 Iterative Hard Thresholding (IHT)

We will now see a different model of Compressed Sensing, where the error/noise is introduced after
the measurement.

Theorem 3: Let A ∈ Rm×n be (3k, ε)-RIP for ε < 0.1. Then given y = Ax+ e for an (unknown)
k-sparse vector x ∈ Rn and some noise vector e ∈ Rn, one can recover in polynomial time an
estimate x̂ such that ∥x̂− x∥2 ≤ O(1)∥e∥2.

Henceforth, all norms are ℓ2 norms.

Basic intuition: The algorithm initially computes z = AT y, and takes ztop(k).

Why is this effective? We expect that z = ATAx+ AT e ≈ x, because ATAx ≈ x and AT e should
be small noise. We will give a formal bound in Lemma 3a below.

The error is then reduced via iterations on the “residual error” in x.

Algorithm IHT:

1. init: z(0) ← AT y, then let x(0) ← z
(0)
top(k)

2. for t = 1, . . . , l = O(log ∥x∥
∥e∥ ):

3. compute z(t) ← x(t−1) +AT (y −Ax(t−1)), then let x(t) ← z
(t)
top(k).

4. output x̂ = x(t)

Lemma 3a (initialization):

∥x(0) − x∥ ≤ 1
4∥x∥+ 2∥e∥.

Lemma 3b (iterative improvement): For every t ≥ 1,

∥x(t) − x∥ ≤ 1
4∥x

(t−1) − x∥+ 5∥e∥.

Proof of Theorem 3: As discussed in class, it follows easily from Lemmas 3a and 3b.

Lemma 3c: Let S ⊃ supp(x), |S| = 3k. Then

∥(z(0) − x)S∥ ≤ ε∥x∥+ 2∥e∥.
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Proof: Since Ax = ASxS and since A is (3k, ε)-RIP,

∥(z − x)S∥ = ∥AT
S (Ax+ e)− xS∥

≤ ∥(AT
SAS − I)xS∥+ ∥AT

Se∥ (triangle inequality)

≤ ∥AT
SAS − I∥∥xS∥+ ∥AT

S∥∥e∥ (operator norm)

≤ ε∥x∥+ 2∥e∥, (RIP)

where we bounded ∥AT
S∥ = ∥AS∥ = sup{∥ASv∥ : ∥v∥ = 1} ≤ (1 + ε)1/2 ≤ 2.

Lemma 3d: Let z ∈ Rn and let T ⊂ [n] be its k heaviest coordinates. Then

∥zT − x∥2 ≤ 5∥(z − x)T∪supp(x)∥2.

Remark: It actually holds for every z ∈ Rn, not only for z(0) = AT y.

Proof: Denote H = supp(x).

Coordinates i ∈ T ∩H contribute (zi − xi)
2 to the LHS, and 5 times that to RHS.

Coordinates i /∈ T ∪H contribute 0 to LHS, and nonnegatively to RHS.

Now pair each i ∈ H \ T with j ∈ T \ H ordered by magnitude, then |zi| ≤ |zj |. By considering
what each pair contributes to each side, it suffices to show x2i + z2j ≤ 5[(zi − xi)

2 + z2j ].

If |zi| > |xi|/2, then x2i ≤ 4z2i ≤ 4z2j and we’re done.

Otherwise |zi| ≤ |xi|/2, then 5(xi − zi)
2 ≥ 5(xi/2)

2 and we’re done.

QED

Proof of Lemma 3a: Recall z(0) = AT y, and let T ⊂ [n] be its k heaviest coordinates. Then

∥z(0)T − x∥ ≤
√
5 ∥(z(0) − x)T∪supp(x)∥ (Lemma 3d)

≤
√
5 [ε∥x∥+ 2∥e∥] (Lemma 3c)

≤ 1
4∥x∥+ 5∥e∥.

QED

Proof of Lemma 3b: We did not have time in class, but here it is.

For sake of analysis, consider a “hypothetical” input where we subtract the previous iteration:

x′ = x− x(t−1) ⇒ supp(x′) ⊆ supp(x) ∪ supp(x(t−1)) (has size ≤ 2k)

y′ = Ax′ + e ⇒ y′ = A(x− x(t−1)) + e = y −Ax(t−1) (line 3 uses this y′)

z′ = AT y′.

Using this notation, we can rewrite line 3 as z(t) ← x(t−1) + z′, and

z(t) − x = x(t−1) + z′ − x = z′ − x′.
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Analogously to the proof of Lemma 3a:

∥x(t) − x∥ = ∥z(t)
T (t) − x∥ (denote T (t) = supp(x(t)) )

≤
√
5 ∥(z(t) − x)T (t)∪supp(x)∥ (Lemma 3d for z(t) )

≤
√
5 ∥(z′ − x′)T (t)∪supp(x)∪supp(x(t−1))∥ (rewrite as above)

≤
√
5 [ε∥x′∥+ 2∥e∥] (Lemma 3c for x′, z′)

≤ 1
4∥x− zT ∥+ 5∥e∥.

QED

Theorem 4 [L1-minimization Algorithm]: A guarantee similar to Theorem 3 (using RIP
matrix) can be obtained by setting b ≥ ∥e∥ and solving the convex program

x̂ = min{∥z∥1 : ∥Az∥2 ≤ b}.

We will not see the proof.

4


