Sublinear Time and Space Algorithms 2020B – Lecture 9 Connectivity in dynamic graphs and triangle counting^{*}

Robert Krauthgamer

1 Connectivity in Dynamic Graphs

Dynamic graph model: The input stream contains insertions and deletions of edges to G. Recall that we assume V = [n].

The tool of choice is linear sketching, where decrements are supported by definition.

Motivations:

a) updates to the graph like removing hyperlinks or un-friending

b) the graph is distributed (each site contains a subset of the edges), and their linear sketches can be easily combined

Theorem [Ahn, Guha and McGregor, 2012]: There is a streaming algorithm with storage $\tilde{O}(n)$ that determines whp whether the graph is connected (In fact, it computes a spanning forest and can determine which pairs of vertices are connected.)

Idea: To grow (increase) connected components, we need to find an outgoing edge from each current component. Using ℓ_0 -sampling and especially its linear-sketch form, we can pick an outgoing edge from an arbitrary set.

Notation: Let $N = \binom{n}{2}$, and for each vertex v define a vector $x^v \in \mathbb{R}^N$ that is 0 except at coordinates

$$x_{\{v,j\}}^v = \begin{cases} +1 & \text{if } (v,j) \in E \text{ and } v < j \\ -1 & \text{if } (v,j) \in E \text{ and } v > j \end{cases}$$

Algorithm AGM:

Update (on a stream/dynamic graph G):

For each vertex v, create a virtual stream for $x^v \in \mathbb{R}^N$ and maintain an ℓ_0 -sampler for this x^v (using the same coins, as these are linear sketches that can be added).

^{*}These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

Repeat the above $\log n$ times independently (i.e., $\log n$ "levels" of samplers for each $v \in V$).

Output (to determine connectivity):

Initialize a partition $\Pi = \{\{1\}, \dots, \{n\}\}$ where each vertex is in a separate connected component. Now repeat for $l = 1, \dots, \log n$:

1. For each connected component $Q \in \Pi$, sum the samplers (more precisely, their sketches) for all $v \in Q$ from level l, to obtain a sampler for $\sum_{v \in Q} x^v$. Then activate the sampler to pick a coordinate from [N] (which we will see is a random outgoing from Q).

2. Use the |Q| sampled edges to merge connected components and update Π

Output "connected" if all the vertices are merged into one connected component.

Analysis: To simplify the analysis, we assume henceforth that G is connected (see below), and that the samplers are perfect (i.e. ignore their polynomially-small error probability).

Exer: Extend the analysis to the case that G is not connected, to determine whether $s, t \in V$ given at query time, are connected.

Claim 1: If the number of connected components at the beginning of an iteration is k > 1 (and the samplers succeed in producing outgoing edges), then their number at the end of the iteration is at most k/2.

Exer: prove this claim.

Claim 2: Fix a set $Q \subset V$. Then $\sum_{v \in Q} x^v$ is nonzero only in coordinates $\{i, j\}$ corresponding to an edge outgoing from Q, i.e., $|Q \cap \{i, j\}| = 1$.

Proof: Was seen in class.

Storage: The main storage is for ℓ_0 -samplers for every vertex. Each one requires $O(\log^3 n)$ bits, and we need fresh randomness in each of the $O(\log n)$ iterations (levels), to avoid potential dependencies. Thus the total storage is $O(n \log^4 n)$ bits.

2 Triangle Counting

Goal: Report the number of triangles, denoted by T, in a graph G given as a stream of m edges on vertex set V = [n].

Motivation: The relative frequency of how often 2 friends of a person know each other is defined as

$$F = \frac{3T}{\sum_{v \in V} \binom{\deg(v)}{2}}.$$

We can compute $\sum_{v \in V} {\binom{\deg(v)}{2}}$ exactly in O(n) space, by maintaining the degree of every vertex, and we can also approximate it using $\operatorname{polylog}(n)$ space using algorithms that estimate ℓ_2 -norm.

Distinguishing T = 0 from T = 1 is known to require $\Omega(m)$ space [Braverman, Ostrovsky, and Vilenchik, 2013].

We will henceforth assume a known lower bound $0 < t \leq T$.

First Approach [Bar-Yossef, Kumar and Sivakumar, 2002]:

Idea: use frequency moments.

Define vector $x \in R^{\binom{n}{3}}$, where every coordinate x_S counts the number of edges internal to a subset $S \subset V$ of 3 vertices.

Then $T = \#\{S \subset V, |S| = 3 : x_S = 3\}.$

Lemma: Let $F_p = ||x||_p^p$ be the frequency moments for p = 0, 1, 2. Then

$$T = F_0 - 1.5F_1 + 0.5F_2.$$

Proof: As seen in class it suffices to verify that each coordinate x_S contributes the same amount to both sides.

Why such formula exists?: We are looking for a polynomial $f(x_S) : \mathbb{R} \to \mathbb{R}$ with specific values f(3) = 1 and f(2) = f(1) = f(0) = 0. We can do polynomial interpolation. It would generally require degree 3, but $F_0 = \mathbb{1}_{\{x_S > 0\}}$ gives an extra degree of freedom.

Algorithm 1:

Update: Maintain the frequency moments p = 0, 1, 2 of vector $x \in \mathbb{R}^{\binom{n}{3}}$. Initially x = 0, and when an edge (u, v) arrives, increment x_S for every S of the form $\{u, v, w\}$.

Output: Compute moment estimates \hat{F}_p and report $\hat{T} = \hat{F}_0 - 1.5\hat{F}_1 + 0.5\hat{F}_2$.

Correctness: As was seen in class, suppose we compute frequency estimates $\hat{F}_P \in (1 \pm \gamma)F_p$. Then if we set suitable $\gamma = O(\frac{\varepsilon t}{mn})$, we would get additive error $\varepsilon t \leq \varepsilon T$.

Storage: The storage requirement is $O(\gamma^{-2} \log n) = O(\varepsilon^{-2}(\frac{mn}{t})^2 \log n)$ words.