Sublinear Time and Space Algorithms 2020B - Lecture 9 Connectivity in dynamic graphs and triangle counting*

Robert Krauthgamer

1 Connectivity in Dynamic Graphs

Dynamic graph model: The input stream contains insertions and deletions of edges to G.
Recall that we assume $V=[n]$.
The tool of choice is linear sketching, where decrements are supported by definition.

Motivations:

a) updates to the graph like removing hyperlinks or un-friending
b) the graph is distributed (each site contains a subset of the edges), and their linear sketches can be easily combined

Theorem [Ahn, Guha and McGregor, 2012]: There is a streaming algorithm with storage $\tilde{O}(n)$ that determines whp whether the graph is connected (In fact, it computes a spanning forest and can determine which pairs of vertices are connected.)

Idea: To grow (increase) connected components, we need to find an outgoing edge from each current component. Using ℓ_{0}-sampling and especially its linear-sketch form, we can pick an outgoing edge from an arbitrary set.
Notation: Let $N=\binom{n}{2}$, and for each vertex v define a vector $x^{v} \in \mathbb{R}^{N}$ that is 0 except at coordinates

$$
x_{\{v, j\}}^{v}= \begin{cases}+1 & \text { if }(v, j) \in E \text { and } v<j \\ -1 & \text { if }(v, j) \in E \text { and } v>j\end{cases}
$$

Algorithm AGM:

Update (on a stream/dynamic graph G):
For each vertex v, create a virtual stream for $x^{v} \in \mathbb{R}^{N}$ and maintain an ℓ_{0}-sampler for this x^{v} (using the same coins, as these are linear sketches that can be added).

[^0]Repeat the above $\log n$ times independently (i.e., $\log n$ "levels" of samplers for each $v \in V$).
Output (to determine connectivity):
Initialize a partition $\Pi=\{\{1\}, \ldots,\{n\}\}$ where each vertex is in a separate connected component.
Now repeat for $l=1, \ldots, \log n$:

1. For each connected component $Q \in \Pi$, sum the samplers (more precisely, their sketches) for all $v \in Q$ from level l, to obtain a sampler for $\sum_{v \in Q} x^{v}$. Then activate the sampler to pick a coordinate from $[N]$ (which we will see is a random outgoing from Q).
2. Use the $|Q|$ sampled edges to merge connected components and update Π

Output "connected" if all the vertices are merged into one connected component.
Analysis: To simplify the analysis, we assume henceforth that G is connected (see below), and that the samplers are perfect (i.e. ignore their polynomially-small error probability).

Exer: Extend the analysis to the case that G is not connected, to determine whether $s, t \in V$ given at query time, are connected.

Claim 1: If the number of connected components at the beginning of an iteration is $k>1$ (and the samplers succeed in producing outgoing edges), then their number at the end of the iteration is at most $k / 2$.

Exer: prove this claim.
Claim 2: Fix a set $Q \subset V$. Then $\sum_{v \in Q} x^{v}$ is nonzero only in coordinates $\{i, j\}$ corresponding to an edge outgoing from Q, i.e., $|Q \cap\{i, j\}|=1$.

Proof: Was seen in class.
Storage: The main storage is for ℓ_{0}-samplers for every vertex. Each one requires $O\left(\log ^{3} n\right)$ bits, and we need fresh randomness in each of the $O(\log n)$ iterations (levels), to avoid potential dependencies. Thus the total storage is $O\left(n \log ^{4} n\right)$ bits.

2 Triangle Counting

Goal: Report the number of triangles, denoted by T, in a graph G given as a stream of m edges on vertex set $V=[n]$.

Motivation: The relative frequency of how often 2 friends of a person know each other is defined as

$$
F=\frac{3 T}{\sum_{v \in V}\binom{\operatorname{deg}(v)}{2}} .
$$

We can compute $\sum_{v \in V}\binom{\operatorname{deg}(v)}{2}$ exactly in $O(n)$ space, by maintaining the degree of every vertex, and we can also approximate it using polylog (n) space using algorithms that estimate ℓ_{2}-norm.

Distinguishing $T=0$ from $T=1$ is known to require $\Omega(m)$ space [Braverman, Ostrovsky, and Vilenchik, 2013].

We will henceforth assume a known lower bound $0<t \leq T$.
First Approach [Bar-Yossef, Kumar and Sivakumar, 2002]:
Idea: use frequency moments.
Define vector $x \in R^{\binom{n}{3}}$, where every coordinate x_{S} counts the number of edges internal to a subset $S \subset V$ of 3 vertices.

Then $T=\#\left\{S \subset V,|S|=3: x_{S}=3\right\}$.
Lemma: Let $F_{p}=\|x\|_{p}^{p}$ be the frequency moments for $p=0,1,2$. Then

$$
T=F_{0}-1.5 F_{1}+0.5 F_{2} .
$$

Proof: As seen in class it suffices to verify that each coordinate x_{S} contributes the same amount to both sides.

Why such formula exists?: We are looking for a polynomial $f\left(x_{S}\right): \mathbb{R} \rightarrow \mathbb{R}$ with specific values $f(3)=1$ and $f(2)=f(1)=f(0)=0$. We can do polynomial interpolation. It would generally require degree 3 , but $F_{0}=\mathbb{1}_{\left\{x_{S}>0\right\}}$ gives an extra degree of freedom.

Algorithm 1:

Update: Maintain the frequency moments $p=0,1,2$ of vector $x \in \mathbb{R}^{\binom{n}{3}}$. Initially $x=0$, and when an edge (u, v) arrives, increment x_{S} for every S of the form $\{u, v, w\}$.
Output: Compute moment estimates \hat{F}_{p} and report $\hat{T}=\hat{F}_{0}-1.5 \hat{F}_{1}+0.5 \hat{F}_{2}$.
Correctness: As was seen in class, suppose we compute frequency estimates $\hat{F}_{P} \in(1 \pm \gamma) F_{p}$. Then if we set suitable $\gamma=O\left(\frac{\varepsilon t}{m n}\right)$, we would get additive error $\varepsilon t \leq \varepsilon T$.
Storage: The storage requirement is $O\left(\gamma^{-2} \log n\right)=O\left(\varepsilon^{-2}\left(\frac{m n}{t}\right)^{2} \log n\right)$ words.

[^0]: *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

