Sublinear Time and Space Algorithms 2020B – Problem Set 1

Robert Krauthgamer

Due: May 11, 2020

General instructions: Please keep your answers short and easy to read. You can use results, calculations or notation seen in class without repeating them, unless asked explicitly to redo them.

1. Design a streaming algorithm that at any point m (not known in advance) receives a query $S \subset [n]$ and outputs and estimate what fraction of items in the stream belong to S within additive error ϵ . Note that S is given only at query time (not in advance).

Hint: Maintain $O(1/\epsilon^2)$ random samples and use them to estimate the fraction in S.

2. Suppose we are guaranteed that some item in the stream $\sigma_1, \ldots, \sigma_m$ appears more than half the time, i.e., there exists (unknown) $i \in [n]$ with frequency $x_i > m/2$. Design a streaming algorithm with space complexity $O(\log n)$ bits that finds this item *i*. Next, extend your algorithm to output also a $(1 + \epsilon)$ -approximation to its frequency x_i . Make sure to clearly state the space complexity of your algorithms.

Hint (for the basic version): Store only two items.