Randomized Algorithms 2021A - Lecture 13 Spectral Sparsification (cont'd)*

Robert Krauthgamer

1 Matrix Chernoff

Löwner ordering: We write $A \succcurlyeq 0$ to denote that A is PSD. We extend it to a partial ordering between symmetric matrices, defining $A \succcurlyeq B$ if $A-B \succcurlyeq 0$.

Observe that the spectral sparsification condition (2) from last time can be written as

$$
(1-\varepsilon) L_{G} \preccurlyeq L_{G^{\prime}} \preccurlyeq(1+\varepsilon) L_{G} .
$$

Matrix Chernoff bound [Tropp, 2012]: Let X_{1}, \ldots, X_{k} be independent random $n \times n$ symmetric matrices. Suppose that

$$
\forall i \in[k], \quad 0 \preccurlyeq X_{i} \preccurlyeq I \quad \text { and } \quad \underline{\mu} \cdot I \preccurlyeq \sum_{i=1}^{k} \mathbb{E}\left[X_{i}\right] \preccurlyeq \bar{\mu} \cdot I .
$$

Then for all $\varepsilon \in[0,1]$,

$$
\begin{aligned}
& \operatorname{Pr}\left[\lambda_{\max }\left(\sum_{i=1}^{k} X_{i}\right) \geq(1+\varepsilon) \bar{\mu}\right] \leq n \cdot e^{-\varepsilon^{2} \bar{\mu} / 3}, \\
& \operatorname{Pr}\left[\lambda_{\min }\left(\sum_{i=1}^{k} X_{i}\right) \leq(1-\varepsilon) \underline{\mu}\right] \leq n \cdot e^{-\varepsilon^{2} \bar{\mu} / 2} .
\end{aligned}
$$

2 Spectral Sparsifiers (cont'd)

We now continue to analyze Algorithm SS seen last week.
Proof of Lemma 5: Was seen in class using the cyclic property of trace.
There is also a combinatorial explanation for this equality: $w_{e} \mathrm{R}_{\mathrm{eff}}(e)$ can be shown to be exactly the probability that edge e appears in a random spanning tree of G, when the probability to sample

[^0]any specific tree is proportional to the product of its edge weights. The expected number of edges in such a random tree is just the sum of these edge probabilities, and clearly it is also $n-1$.

Connection to importance sampling: Lemma 7 below shows that $w_{u v} \mathrm{R}_{\mathrm{eff}}(u, v)$ for an edge $u v \in E$ is precisely the maximum possible (over all x) relative contribution of this edge to $x^{\top} L_{G} x=$ $\sum_{i j \in E} w_{i j}\left(x_{i}-x_{j}\right)^{2}$. Thus, the sampling probability p_{e} of an edge is proportional to its worstcase relative contribution to $x^{\top} L_{G} x$. (Why proportionally and not exactly? because the values $w_{u v} \mathrm{R}_{\mathrm{eff}}(u, v)$ could sum up to more than 1.)

We could thus apply the importance sampling theorem with $\lambda=n-1$ for any specific $x \in \mathbb{R}^{V}$. However, this would not prove Theorem 3, because the importance sampling theorem provides only weak concentration, that is not strong enough to take a union bound over all $x \in \mathbb{R}^{V}$.

Lemma 7:

$$
\forall u v \in E, \quad \mathrm{R}_{\mathrm{eff}}(u, v)=\max _{x \in \mathbb{R}^{V}} \frac{\left(x_{u}-x_{v}\right)^{2}}{x^{\top} L_{G} x}
$$

Observe that we can think of x as a vector of potentials $\phi \in \mathbb{R}^{V}$, and restate the lemma as an analogue of Thomson's principle (minimizing energy, but now for potentials):

$$
\forall u v \in E, \quad \mathrm{R}_{\mathrm{eff}}(u, v)=\left[\min _{\phi_{u}-\phi_{v}=1} \phi^{\top} L_{G} \phi\right]^{-1} .
$$

Proof hint: Consider a minimizer ϕ. First show that every ϕ_{i} for $i \neq u, v$ is the weighted average of ϕ_{j} over its neighbors $j \in N(i)$. Then use this minimizer ϕ to define an electrical flow f, and use this flow to express each side, $\mathrm{R}_{\mathrm{eff}}(u, v)$ and $\phi^{\top} L_{G} \phi$.

Proof of Theorem 3: Was seen in class. The basic idea is to use the Matrix Chernoff bound, but since it is "built" for scenarios where the expectation is μI, we need to rotate/change the basis, achieved by multiplying by $L_{G}^{-1 / 2}$. More precisely, we define

$$
y_{u v}:=L_{G}^{-1 / 2} z_{u v},
$$

and now claim (as an exercise) that
Exer: Show that

$$
\begin{equation*}
(1-\varepsilon) L_{G} \preccurlyeq L_{G^{\prime}}=\sum_{e \in E} w_{e}^{\prime} Z_{e} \preccurlyeq(1+\varepsilon) L_{G} \tag{1}
\end{equation*}
$$

if and only if (modulo the pseudo-inverse/kernel issue)

$$
(1-\varepsilon) I \preccurlyeq L_{G}^{-1 / 2}\left(\sum_{e \in E} w_{e}^{\prime} z_{e} z_{e}^{\top}\right) L_{G}^{-1 / 2}=\sum_{e \in E} w_{e}^{\prime} y_{e} y_{e}^{\top} \preccurlyeq(1+\varepsilon) I,
$$

where we define

$$
y_{u v}:=L_{G}^{-1 / 2} z_{u v} .
$$

Hint: Multiply from left and right by $L_{G}^{-1 / 2}$.

Denote the random edge chosen at iteration $i \in[k]$ by e_{i}, and then the random matrix (from above) that we need analyze can be written as

$$
\begin{equation*}
M^{\prime}=\sum_{e \in E} w_{e}^{\prime} y_{e} y_{e}^{\top}=\sum_{i=1}^{k} \frac{n-1}{k \cdot \mathrm{R}_{\mathrm{eff}}\left(e_{i}\right)} y_{e_{i}} y_{e_{i}}^{\top} . \tag{2}
\end{equation*}
$$

To complete the proof of Theorem 3, apply the matrix Chernoff bound to $\frac{k}{n-1} M^{\prime}=\sum_{i=1}^{k} \frac{1}{\mathrm{R}_{\mathrm{eff}}\left(e_{i}\right)} y_{e_{i}} y_{e_{i}}^{\top}$, (after checking the conditions), and conclude the required bounds on the eigenvalues of M^{\prime}.

Exer: Explain how to modify the analysis when the sampling loop in steps 3-5 of Algorithm SS is changed to the following: for each edge $e \in E$, repeat $k^{\prime}=O\left(\varepsilon^{-2} \log n\right)$ times, where each repetition increases the weight w_{e}^{\prime} (as in step 5) independently with probability p_{e}.

Exer: Show how to modify the algorithm and its analysis to use estimates \tilde{p}_{e} instead of p_{e} (e.g., maybe these estimates can be computed very quickly), under the assumption that every $\tilde{p}_{e} \geq p_{e}$, and that $\sum_{e \in E} \tilde{p}_{e} \leq C$.
Hint: you may use the preceding exercise.

[^0]: *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

