# Randomized Algorithms 2021A - Lecture 2 (second part) Undirected Connectivity and Cover Time* 

Robert Krauthgamer

## 1 Undirected Connectivity

We finished the discussion from last time, including Markov's inequality.
Markov's inequality: Let $X$ be a nonnegative random variable with finite expectation. Then

$$
\forall t>1, \quad \operatorname{Pr}[X \geq t \cdot \mathbb{E}[X]] \leq 1 / t
$$

Or equivalently,

$$
\forall s>1, \quad \operatorname{Pr}[X \geq s] \leq \mathbb{E}[X] / s
$$

## 2 Cover Time

The cover time from vertex $u$, denoted $\operatorname{cov}_{u}(G)$, is the expected number of steps until a random walk that starts at $u$ has visited all vertices of $G$. Formally, let $T^{\prime}=\min \left\{t \geq 0:\left\{X_{0}, X_{1}, \ldots, X_{t}\right\}=V\right\}$ and let $\operatorname{cov}_{u}(G)=\mathbb{E}\left[T^{\prime}\right]$.

The cover time of a graph $G$ is defined as $\operatorname{cov}(G)=\max _{u} \operatorname{cov}_{u}(G)$, i.e., according to the "worst-case" starting vertex.
Example: In the $n$-clique, the cover time is $O(n \log n)$. (It is just the coupon collector problem, as we will soon see).

Exer: Prove it.
Theorem 6: $\operatorname{cov}(G) \leq 2(n-1)|E|$.
Proof: Was seen in class, using a spanning tree $T$ of the graph.
Theorem 7 (Matthews' bound): Let $G$ be a connected graph on $n$ vertices, and let $H_{\max }=$ $\max \left\{H_{u v}: u, v \in V\right\}$. Then

$$
H_{\max } \leq \operatorname{cov}(G) \leq O(\log n) H_{\max }
$$

[^0]Proof: Was seen in class.
Exer: Show that each of these inequalities is tight (up to constants) for some graph $G$.


[^0]:    *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

