Randomized Algorithms 2021A - Lecture 5 (second part) Dimension Reduction in $\ell_{2}{ }^{*}$

Robert Krauthgamer

1 The Johnson-Lindenstrauss (JL) Lemma

The Johnson-Lindenstrauss (JL) Lemma: Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ and fix $0<\varepsilon<1$. Then there exist $y_{1}, \ldots, y_{n} \in \mathbb{R}^{k}$ for $k=O\left(\varepsilon^{-2} \log n\right)$, such that

$$
\forall i, j \in[n], \quad\left\|y_{i}-y_{j}\right\|_{2} \in(1 \pm \varepsilon)\left\|x_{i}-x_{j}\right\|_{2}
$$

Moreover, there is a randomized linear mapping $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ (oblivious to the given points), such that if we define $y_{i}=L x_{i}$, then with probability at least $1-1 / n$ all the above inequalities hold.

Throughout, all norms are ℓ_{2}, unless stated otherwise.
Remark: there is no assumption on the input points (e.g., that they lie in a low-dimensional space).
Idea: The map L is essentially (up to normalization) a matrix of standard Gaussians. In fact, random signs ± 1 work too!
Since L is linear, $L x_{i}-L x_{j}=L\left(x_{i}-x_{j}\right)$, and it suffices to verify that L preserves the norm of arbitrary vector WHP (instead of arbitrary pair of vectors).

Lemma 2 (Main): Fix $\delta \in(0,1)$ and let $G \in \mathbb{R}^{k \times d}$ be a random matrix of standard Gaussians, for suitable $k=O\left(\varepsilon^{-2} \log \frac{1}{\delta}\right)$. Then

$$
\forall v \in \mathbb{R}^{d}, \quad \operatorname{Pr}[\|G v\| \notin(1 \pm \varepsilon) \sqrt{k}\|v\|] \leq \delta .
$$

Using main lemma: Let $L=G / \sqrt{k}$, and recall we defined $y_{i}=L x_{i}$. For every $i<j$, apply the lemma to $x_{i}-x_{j}$, then with probability at least $1-\delta=1-1 / n^{3}$,

$$
\left\|y_{i}-y_{j}\right\|=\left\|L\left(x_{i}-x_{j}\right)\right\|=\left\|G\left(x_{i}-x_{j}\right)\right\| / \sqrt{k} \in(1 \pm \varepsilon)\left\|x_{i}-x_{j}\right\| .
$$

Now apply a union bound over $\binom{n}{2}$ pairs.
QED

[^0]It remains to prove the main lemma.
Fact 3 (the sum of Gaussians is Gaussian): Let $X \sim N\left(0, \sigma_{X}^{2}\right)$ and $Y \sim N\left(0, \sigma_{Y}^{2}\right)$ be independent Gaussian random variables. Then $X+Y \sim N\left(0, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$.
The proof is by writing the CDF function (integration), recall that PDF is $\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$.
Corollary 4 (Gaussians are 2-stable): Let X_{1}, \ldots, X_{n} be independent standard Gaussians $N(0,1)$, and let $\sigma_{1}, \ldots, \sigma_{n} \in \mathbb{R}$. Then $\sum_{i} \sigma_{i} X_{i} \sim N\left(0, \sum_{i} \sigma_{i}^{2}\right)$.

Follows by induction.
Proof of main lemma: Was seen in class, using the next claim.
Claim 5: Let Y have chi-squared distribution with parameter k, i.e., $Y=\sum_{i=1}^{k} X_{i}^{2}$ for independent $X_{1}, \ldots, X_{k} \sim N(0,1)$. Then

$$
\forall \varepsilon \in(0,1), \quad \operatorname{Pr}\left[Y \geq(1+\varepsilon)^{2} k\right] \leq e^{-\varepsilon^{2} k / 2}
$$

Remark: The claim and its proof are similar to Hoeffding bounds. Indeed, one may compare Claim 5 to another random variable $Y^{\prime} \sim 2 \cdot B(k, 1 / 2)$ which has the same expectation.

It remains to prove Claim 5, which we will see in the next class.

[^0]: *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

