
Randomized Algorithms 2021A – Lecture 6 (second part)

Fast JL Transform*

Robert Krauthgamer

1 The Johnson-Lindenstrauss (JL) Lemma (cont’d)

Claim 5: Let Y have chi-squared distribution with parameter k, i.e., Y =
∑k

i=1X
2
i for indepen-

dent X1, . . . , Xk ∼ N(0, 1). Then

∀ε ∈ (0, 1), Pr[Y ≥ (1 + ε)2k] ≤ e−ε2k/2.

Proof of Claim 5: Was seen in class, using the following exercise.

Exer: Prove (by evaluating the integral, and substituting z = x
√
1− 2t) that

E[etX
2
i ] = 1√

1−2t
.

Exer: Extend the JL Lemma (via the main lemma) to every matrix G whose entries are iid from
a distribution that has mean 0, variance 1, and sub-Gaussian tail which means that for some fixed
C > 0,

∀t > 0, E[etX ] ≤ eCt2 .

Then use it to conclude in particular for a matrix of ±1.

Hint: Use the following trick. Introduce a standard Gaussian Z independent of X, then E[etZ ] =
et

2/2, and thus

EX [etX
2
] = EX [e(

√
2tX)2/2] = EX EZ [e

(
√
2tX)Z ] = EZ EX [e(

√
2tZ)X ] ≤ EZ [e

2CtZ2
],

and the last term can be evaluated using the previous exercise.

*These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1



2 Fast JL Transform

Computing the JL map of a vector requires the multiplication of a matrix L ∈ Rk×d with a vector
x ∈ Rd, which generally takes O(kd) time, because L is a dense matrix.

Question: Can we compute it faster?

Sparse JL: Some constructions (see Kane-Nelson, JACM 2014) use a sparse matrix L, namely,
only an ε-fraction of the entries are nonzero, leading to a speedup by factor ε (and even more if x
is sparse).

We will see another approach, where L is dense but its special structure leads to fast multiplication,
close to O(d+ k) instead of O(kd).

Theorem 6 [Ailon and Chazelle, 2006]: There is a random matrix L ∈ Rk×d that satisfies the
guarantees of the JL lemma and for which matrix-vector multiplication takes time O(d log d+ k3).

We will see a simplified version of this theorem (faster but higher dimension).

Theorem 7: For every d ≥ 1 and 0 < δ < 1, there is a random matrix L ∈ Rk×d for k =
O(ε−2 log2(d/δ) log(1/δ)), such that

∀v ∈ Rd, Pr
[
∥Lv∥ /∈ (1± ε)∥v∥

]
≤ 1/δ,

and multiplying L with a vector v takes time O(d log d+ k).

Super-Sparse Sampling: A basic idea is to just sample one entry of v (each time).

Let S ∈ Rk×d be a matrix where each row has a single nonzero entry of value
√
d/k in a uniformly

random location. This is sometimes called a sampling matrix (up to appropriate scaling). For every
v ∈ Rd,

E[(Sv)21] =
d∑

j=1

1
d(
√
d/k · vj)2 = 1

k∥v∥
2.

E[∥Sv∥2] =
k∑

i=1

E[(Sv)2i ] = ∥v∥2.

The expectation is correct, however the variance can be huge, e.g., if v has just one nonzero
coordinate, then for S to be likely to sample it, we need k = Ω(d).

We shall first see how to transform v into a vector y ∈ Rd with no “heavy” coordinate, meaning
that

∥y∥∞
∥y∥2

≈ 1√
d
.

and later we will prove that super-sparse sampling works for such vectors.
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