Randomized Algorithms 2021A - Lecture 6 (second part)
 Fast JL Transform*

Robert Krauthgamer

1 The Johnson-Lindenstrauss (JL) Lemma (cont'd)

Claim 5: Let Y have chi-squared distribution with parameter k, i.e., $Y=\sum_{i=1}^{k} X_{i}^{2}$ for independent $X_{1}, \ldots, X_{k} \sim N(0,1)$. Then

$$
\forall \varepsilon \in(0,1), \quad \operatorname{Pr}\left[Y \geq(1+\varepsilon)^{2} k\right] \leq e^{-\varepsilon^{2} k / 2}
$$

Proof of Claim 5: Was seen in class, using the following exercise.
Exer: Prove (by evaluating the integral, and substituting $z=x \sqrt{1-2 t}$) that

$$
\mathbb{E}\left[e^{t X_{i}^{2}}\right]=\frac{1}{\sqrt{1-2 t}}
$$

Exer: Extend the JL Lemma (via the main lemma) to every matrix G whose entries are iid from a distribution that has mean 0 , variance 1 , and sub-Gaussian tail which means that for some fixed $C>0$,

$$
\forall t>0, \quad \mathbb{E}\left[e^{t X}\right] \leq e^{C t^{2}}
$$

Then use it to conclude in particular for a matrix of ± 1.
Hint: Use the following trick. Introduce a standard Gaussian Z independent of X, then $\mathbb{E}\left[e^{t Z}\right]=$ $e^{t^{2} / 2}$, and thus

$$
\mathbb{E}_{X}\left[e^{t X^{2}}\right]=\mathbb{E}_{X}\left[e^{(\sqrt{2 t} X)^{2} / 2}\right]=\mathbb{E}_{X} \mathbb{E}_{Z}\left[e^{(\sqrt{2 t} X) Z}\right]=\mathbb{E}_{Z} \mathbb{E}_{X}\left[e^{(\sqrt{2 t} Z) X}\right] \leq \mathbb{E}_{Z}\left[e^{2 C t Z^{2}}\right]
$$

and the last term can be evaluated using the previous exercise.

[^0]
2 Fast JL Transform

Computing the JL map of a vector requires the multiplication of a matrix $L \in \mathbb{R}^{k \times d}$ with a vector $x \in \mathbb{R}^{d}$, which generally takes $O(k d)$ time, because L is a dense matrix.
Question: Can we compute it faster?
Sparse JL: Some constructions (see Kane-Nelson, JACM 2014) use a sparse matrix L, namely, only an ε-fraction of the entries are nonzero, leading to a speedup by factor ε (and even more if x is sparse).

We will see another approach, where L is dense but its special structure leads to fast multiplication, close to $O(d+k)$ instead of $O(k d)$.
Theorem 6 [Ailon and Chazelle, 2006]: There is a random matrix $L \in \mathbb{R}^{k \times d}$ that satisfies the guarantees of the JL lemma and for which matrix-vector multiplication takes time $O\left(d \log d+k^{3}\right)$.

We will see a simplified version of this theorem (faster but higher dimension).
Theorem 7: For every $d \geq 1$ and $0<\delta<1$, there is a random matrix $L \in \mathbb{R}^{k \times d}$ for $k=$ $O\left(\varepsilon^{-2} \log ^{2}(d / \delta) \log (1 / \delta)\right)$, such that

$$
\forall v \in \mathbb{R}^{d}, \quad \operatorname{Pr}[\|L v\| \notin(1 \pm \varepsilon)\|v\|] \leq 1 / \delta,
$$

and multiplying L with a vector v takes time $O(d \log d+k)$.
Super-Sparse Sampling: A basic idea is to just sample one entry of v (each time).
Let $S \in \mathbb{R}^{k \times d}$ be a matrix where each row has a single nonzero entry of value $\sqrt{d / k}$ in a uniformly random location. This is sometimes called a sampling matrix (up to appropriate scaling). For every $v \in \mathbb{R}^{d}$,

$$
\begin{aligned}
& \mathbb{E}\left[(S v)_{1}^{2}\right]=\sum_{j=1}^{d} \frac{1}{d}\left(\sqrt{d / k} \cdot v_{j}\right)^{2}=\frac{1}{k}\|v\|^{2} . \\
& \mathbb{E}\left[\|S v\|^{2}\right]=\sum_{i=1}^{k} \mathbb{E}\left[(S v)_{i}^{2}\right]=\|v\|^{2} .
\end{aligned}
$$

The expectation is correct, however the variance can be huge, e.g., if v has just one nonzero coordinate, then for S to be likely to sample it, we need $k=\Omega(d)$.

We shall first see how to transform v into a vector $y \in \mathbb{R}^{d}$ with no "heavy" coordinate, meaning that

$$
\frac{\|y\|_{\infty}}{\|y\|_{2}} \approx \frac{1}{\sqrt{d}} .
$$

and later we will prove that super-sparse sampling works for such vectors.

[^0]: *These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the interest of brevity, most references and credits were omitted.

