Randomized Algorithms 2021A - Problem Set (done in class)

Robert Krauthgamer and Moni Naor

December 28, 2020

1. Suppose the matrix $S \in \mathbb{R}^{s \times n}$ is $\left(\varepsilon^{\prime}, \delta^{\prime}, b^{\prime}\right)$-JLT for $b^{\prime}=3$. Show that for every $x, y \in \mathbb{R}^{n}$ with $\|x\|=\|y\|=1$, with probability at least $1-\delta^{\prime}$,

$$
\begin{equation*}
|\langle S x, S y\rangle-\langle x, y\rangle| \leq 9 \varepsilon^{\prime} \tag{1}
\end{equation*}
$$

Hint: Write $2\langle x, y\rangle=\|x\|^{2}+\|y\|^{2}-\|x-y\|^{2}$.
2. Let $\varepsilon>0$ and $A, B \in \mathbb{R}^{n \times m}$ be an input for AMM. Suppose the matrix $S \in \mathbb{R}^{n \times s}$ is $\left(\varepsilon^{\prime}, \delta^{\prime}, b^{\prime}\right)$ JLT, where the parameters satisfy $\varepsilon^{\prime}=\varepsilon / 9, \delta^{\prime}=\delta$, and $b^{\prime}=O\left(m^{2}\right)$. Show that with probability at least $1-\delta$, the matrix $(S A)^{\top}(S B)$ solves AMM, i.e.,

$$
\left\|(S A)^{\top}(S B)-A^{\top} B\right\|_{F} \leq \varepsilon\|A\|_{F}\|B\|_{F}
$$

Hint: Use the previous question to reduce the dimension n (in A, B) to dimension s.
3. Show that given n points $x_{1}, \ldots, x_{n} \in[m]^{d}$ for $m=d=n / 10$ as input, the radius of the point set (under ℓ_{2}-distance) can be $(1+\varepsilon)$-approximated faster than the naive computation in time $O\left(n^{2} d\right)=O\left(n^{3}\right)$. Here, the radius is defined as

$$
r:=\min _{i \in[n]} \max _{j \in[n]}\left\|x_{i}-x_{j}\right\|_{2},
$$

Bonus question:

4. (a) Let $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ and suppose the linear map $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{t}$ preserves all pairwise distances within factor $1 \pm \varepsilon$, i.e.,

$$
\forall i, j \in[n], \quad\left\|L\left(x_{i}-x_{j}\right)\right\| \in(1 \pm \varepsilon)\left\|x_{i}-x_{j}\right\| .
$$

Prove that the area of every right-angled triangle $\left\{x_{i}, x_{j}, x_{k}\right\}$ (i.e., whenever $\left\langle x_{j}-x_{i}, x_{k}-x_{i}\right\rangle=$ 0) is preserved by L within factor $1+O(\varepsilon)$.
Hint: Use ($\mathbb{(D)}$.
(b) Show there is a random map $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{t}$ for $t=O\left(\varepsilon^{-2} \log n\right)$, such that for every n points $y_{1}, \ldots, y_{n} \in \mathbb{R}^{d}$, with high probability, L preserves the area of every triangle $\left\{y_{i}, y_{j}, y_{k}\right\}$ within factor $1+\varepsilon$.
Hint: For every triangle, use one extra point to "break" it into two right-angle triangles.

