
Sublinear Time and Space Algorithms 2022B – Lecture 3

`2 Frequency Moment and `1 Point Queries
∗

Robert Krauthgamer

1 Frequency Moments and the AMS algorithm

`p-norm problem: Let x ∈ Rn be the frequency vector of the input stream, and fix a parameter
p > 0.

Goal: estimate its `p-norm ‖x‖p = (
∑

i|xi|p)1/p. We focus on p = 2.

Theorem 1 [Alon, Matthias, and Szegedy, 1996]: One can estimate the `2 norm of a fre-
quency vector x ∈ Rn within factor 1+ε [with high constant probability] using storage requirement
of s = O(ε−2) words. In fact, the algorithm stores a linear sketch of dimension s.

Algorithm AMS (also known as Tug-of-War):

1. Init: choose r1, . . . , rn independently at random from {−1,+1}

2. Update: maintain Z =
∑

i rixi

3. Output: to estimate ‖x‖22 report Z2

The sketch Z is linear in x, and thus the update step can indeed be implemented in a streaming
fashion. Indeed, if the sketch is some linear map L : Rn → Rs, then it can be updated by
L(x+ ei) = L(x) + L(ei).

Storage requirement: O(log(nm)) bits, not including randomness; we will discuss implementation
issues a bit later.

Analysis: We saw in class that E[Z2] =
∑

i x
2
i = ‖x‖22, and Var(Z2) ≤ 2(E[Z2])2.

Algorithm AMS+:

1. Run t = O(1/ε2) independent copies of Algorithm AMS, denoting their Z values by Z1, . . . , Zt,
and output the mean of these copies Ỹ = 1

t

∑
j Z

2
j .

Observe that the sketch (Z1, . . . , Zt) is still linear.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.

1

Storage requirement: O(t) = O(1/ε2) words (for constant success probability), not including ran-
domness.

Analysis: We saw in class that

Pr[|Ỹ − E Ỹ | ≥ εE Ỹ] ≤ Var(Ỹ)

ε2(E Ỹ)2
= Var(Z2)/t

ε2(EZ2)2
≤ 2

tε2
.

Choosing appropriate t = O(1/ε2) makes the probability of error an arbitrarily small constant.

Notice it actually gives a (1 ± ε)-approximation to ‖x‖22, which is immediately yields a (1 ± ε)-
approximation to ‖x‖2.

Exer: What would happen in the accuracy analysis if the ri’s were chosen as standard gaussians
N(0, 1)?

2 `1 Point Query via CountMin

Problem Definition: Let x ∈ Rn be the frequency vector of the input stream, and let ‖x‖p =
(
∑

i|xi|p)1/p be its `p-norm. Let α ∈ (0, 1) and p ≥ 1 be parameters known in advance.

The goal is to estimate every coordinate with additive error, namely, given query i ∈ [n], report x̃i
such that WHP

x̃i ∈ xi ± α‖x‖p.

Observe: ‖x‖1 ≥ ‖x‖2 ≥ . . . ≥ ‖x‖∞, hence higher norms (larger p) give better accuracy. We will
see an algorithm for `1, which is the easiest.

Exer: Show that the `1 and `2 norms differ by at most a factor of
√
n, and that this is tight. Do

the same for `2 and `∞.

It is not difficult to see that `∞ point query is hard. For instance, with α < 1/2 we could recover
an arbitrary binary vector x ∈ {0, 1}n, which (at least intuitively) requires Ω(n) bits to store.

Theorem 4 [Cormode-Muthukrishnan, 2005]: There is a streaming algorithm for `1 point
queries that uses a (linear) sketch of O(α−1 log n) memory words to achieve accuracy α with success
probability 1− 1/n2.

We will initially assume all xi ≥ 0.

Algorithm CountMin:

(Assume all xi ≥ 0.)

1. Init: set w = 4/α and choose a random hash function h : [n]→ [w].

2. Update: maintain vector S = [S1, . . . , Sw] where Sj =
∑

i:h(i)=j xi.

3. Output: to estimate xi report x̃i = Sh(i)

Once again, the update step can be implemented in a streaming fashion because it is some linear
map L : Rn → Rw.

2

We call S a sketch to emphasize it is a succinct version of the input, and L a sketching matrix.

Analysis (correctness): We saw in class that x̃i ≥ xi and Pr[x̃i ≥ xi + α‖x‖1] ≤ 1/4.

Algorithm CountMin+:

1. Run t = log n independent copies of algorithm CountMin, keeping in memory the vectors
S1, . . . , St (and functions h1, . . . , ht)

2. Output: the minimum of all estimates x̂i = minl∈[t] S
l
hl(i)

Analysis (correctness): As before, x̂i ≥ xi and

Pr[x̂i > xi + α‖x‖1] ≤ (1/4)t = 1/n2.

By a union bound, with probability at least 1−1/n, for all i ∈ [n] we will have xi ≤ x̂i ≤ xi+α‖x‖1.

Space requirement: O(α−1 log n) words (for success probability 1 − 1/n2), without counting
memory used to represent/store the hash functions.

Exer: Let x ∈ Rn be the frequency vector of a stream of m items (insertions only). Show how to
use the CountMin+ sketch seen in class (for `1 point queries) to estimate the median of x, which
means to report an index j ∈ [n] that with high probability satisfies

∑j
i=1 xi ∈ (12 ± ε)m.

General x (allowing negative entries):

Observe that Algorithm CountMin actually extends to general x that might be negative, and
achieves the guarantee

Pr[x̃i /∈ xi ± α‖x‖1] ≤ 1/4.

Exer: complete the proof.

Next class we will see how to amplify the success probability, using median (instead of minimum)
of O(log n) independent repetitions.

3

	Frequency Moments and the AMS algorithm
	1 Point Query via CountMin

