
Randomized Algorithms 2023A – Lecture 4

Dimension Reduction in `2
∗

Robert Krauthgamer

1 Dimension Reduction in `2

Motivation: Suppose the data is high-dimensional, X ⊂ Rd, n = |X|, and we want to compute
something, e.g., diameter, closest pair, minimum spanning tree, clustering, etc.. Algorithmically,
we may to reduce the dimension and solve the problem in the low dimension. Observe that all the
above problems rely on the Euclidean distance (and not, say, angles between the vectors).

1.1 The Johnson-Lindenstrauss (JL) Lemma

The Johnson-Lindenstrauss (JL) Lemma: Let x1, . . . , xn ∈ Rd and fix 0 < ε < 1. Then
there exist y1, . . . , yn ∈ Rk for k = O(ε−2 log n), such that

∀i, j ∈ [n], ‖yi − yj‖2 ∈ (1± ε)‖xi − xj‖2.

Moreover, there is a randomized linear mapping L : Rd → Rk (oblivious to the given points), such
that if we define yi = Lxi, then with probability at least 1− 1/n all the above inequalities hold.

Throughout, all norms are `2, unless stated otherwise.

Remark: there is no assumption on the input points (e.g., that they lie in a low-dimensional space).

Idea: The map L is essentially (up to normalization) a matrix of standard Gaussians. In fact,
random signs ±1 work too!

Since L is linear, Lxi − Lxj = L(xi − xj), and it suffices to verify that L preserves the norm of
arbitrary vector WHP (instead of arbitrary pair of vectors).

Lemma 2 (Main): Fix δ ∈ (0, 1) and let G ∈ Rk×d be a random matrix of standard Gaussians,
for suitable k = O(ε−2 log 1

δ ). Then

∀v ∈ Rd, Pr
[
‖Gv‖ /∈ (1± ε)

√
k‖v‖

]
≤ δ.

∗These notes summarize the material covered in class, usually skipping proofs, details, examples and so forth, and
possibly adding some remarks, or pointers. The exercises are for self-practice and need not be handed in. In the
interest of brevity, most references and credits were omitted.
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Using main lemma: Let L = G/
√
k, and recall we defined yi = Lxi. For every i < j, apply the

lemma to v = xi − xj , then with probability at least 1− δ = 1− 1/n3,

‖yi − yj‖ = ‖L(xi − xj)‖ = ‖G(xi − xj)‖/
√
k ∈ (1± ε)‖xi − xj‖.

Now apply a union bound over
(
n
2

)
pairs.

QED

It remains to prove the main lemma.

Fact 3 (the sum of Gaussians is Gaussian): Let X ∼ N(0, σ2X) and Y ∼ N(0, σ2Y ) be
independent Gaussian random variables. Then X + Y ∼ N(0, σ2X + σ2Y ).

The proof is by writing the CDF (integration), recall that the PDF is 1√
2π
e−x

2/2.

Corollary 4 (Gaussians are 2-stable): Let X1, . . . , Xn be independent standard Gaussians
N(0, 1), and let σ1, . . . , σn ∈ R. Then

∑
i σiXi ∼ N(0,

∑
i σ

2
i ).

Follows by induction.

Proof of main lemma: Was seen in class, using the next claim.

Claim 5: Let Y have chi-squared distribution with parameter k, i.e., Y =
∑k

i=1X
2
i for indepen-

dent X1, . . . , Xk ∼ N(0, 1). Then

∀ε ∈ (0, 1), Pr[Y ≥ (1 + ε)2k] ≤ e−ε2k/2.

Remark: The claim and its proof are similar to Hoeffding bounds. Indeed, one may compare Claim
5 to another random variable Y ′ ∼ 2 ·B(k, 1/2) which has the same expectation.

Proof of Claim 5: Was seen in class, using the following exercise.

Exer: Prove (by evaluating the integral, and substituting z = x
√

1− 2t) that

E[etX
2
i ] = 1√

1−2t .

Exer: Extend the JL Lemma (via the main lemma) to every matrix G whose entries are iid from
a distribution that has mean 0, variance 1, and sub-Gaussian tail which means that for some fixed
C > 0,

∀t > 0, E[etX ] ≤ eCt2 .

Then use it to conclude in particular for a matrix of ±1.

Hint: Use the following trick. Introduce a standard Gaussian Z independent of X, then E[etZ ] =
et

2/2, and thus

EX [etX
2
] = EX [e(

√
2tX)2/2] = EX EZ [e(

√
2tX)Z ] = EZ EX [e(

√
2tZ)X ] ≤ EZ [e2CtZ

2
],

and the last term can be evaluated using the previous exercise.

Exer: Prove that the above ranomized linear map L further satisfies

∀0 6= v ∈ Rd, E[max{0, ‖Lv‖‖v‖ − (1 + ε)}] ≤ δ.
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1.2 Fast JL

Computing the JL map of a vector requires the multiplication of a matrix L ∈ Rk×d with a vector
x ∈ Rd, which generally takes O(kd) time, because L is a dense matrix.

Question: Can we compute it faster?

Sparse JL: Some constructions (see Kane-Nelson, JACM 2014) use a sparse matrix L, namely,
only an ε-fraction of the entries are nonzero, leading to a speedup by factor ε (and even more if x
is sparse).

We will see another approach, where L is dense but its special structure leads to fast multiplication,
close to O(d+ k) instead of O(kd).

Theorem 6 [Ailon and Chazelle, 2006]: There is a random matrix L ∈ Rk×d that satisfies the
guarantees of the JL lemma and for which matrix-vector multiplication takes time O(d log d+ k3).

We will see a simplified version of this theorem (faster but higher dimension).

Theorem 7: For every d ≥ 1 and 0 < ε, δ < 1, there is a random matrix L ∈ Rk×d for
k = O(ε−2 log2(d/δ) log(1/δ)), such that

∀v ∈ Rd, Pr
[
‖Lv‖ /∈ (1± ε)‖v‖

]
≤ δ,

and multiplying L with a vector v takes time O(d log d+ k).

Super-Sparse Sampling: A basic idea is to just sample one entry of v (each time).

Let S ∈ Rk×d be a matrix where each row has a single nonzero entry of value
√
d/k in a uniformly

random location. This is sometimes called a sampling matrix (up to appropriate scaling). For every
v ∈ Rd,

E[(Sv)21] =

d∑
j=1

1
d(
√
d/k · vj)2 = 1

k‖v‖
2.

E[‖Sv‖2] =

k∑
i=1

E[(Sv)2i ] = ‖v‖2.

The expectation is correct, however the variance can be huge, e.g., if v has just one nonzero
coordinate, then for S to be likely to sample it, we need k = Ω(d).

We shall first see how to transform v into a vector y ∈ Rd with no “heavy” coordinate, meaning
that

‖y‖∞
‖y‖2

≈ 1√
d
.

and later we will prove that super-sparse sampling works for such vectors.

Definition: A Hadamard matrix is a matrix H ∈ Rd×d that is orthogonal, i.e., HTH = I and all
its entries are in {±1/

√
d}.

3



Observe that by definition ‖Hv‖22 = (Hv)T (Hv) = vT v = ‖v‖2.

When d is a power of 2, such a matrix exists, and can be constructed by induction as follows (called
a Walsh-Hadamard matrix).

H2 =

(
1 1
1 −1

)
/
√

2,

Hd =

(
Hd/2 Hd/2

Hd/2 −Hd/2

)
/
√

2.

It is easy to verify it is indeed a Hadamard matrix, i.e., that all entries are ±1/
√
d and HT

d Hd = I.

Lemma 8: Multiplying Hd by a vector can be performed in time O(d log d).

Exer: Prove this lemma, using divide and conquer.

Randomized Hadamard matrix: Let D ∈ Rd×d be a diagonal matrix whose ith diagonal
entry is an independent random sign ri ∈ {±1}. Observe that HD is a random Hadamard matrix,
because its entries are still ±1/

√
d and (HD)T (HD) = DTHTHD = DTD = I.

Lemma 9: Let HD be a random Hadamard matrix as above, and let δ ∈ (0, 1). Then

∀0 6= v ∈ Rd, Pr
D

[
‖HDv‖∞
‖HDv‖2

≥
√

2 ln(4d/δ)

d

]
≤ δ/2.

Exer: Prove Lemma 9 (as discussed in class) using the following concentration bound.

Hoeffding’s (generalized) inequality: Let X1, . . . , Xn be independent random variables where
Xi ∈ [ai, bi]. Then X =

∑
iXi satisfies

∀t ≥ 0, Pr
[
|X − E[X]| ≥ t

]
≤ 2e−2t

2/
∑

i(bi−ai)2 .

Lemma 10: Let S ∈ Rk×d be a super-sparse sampling matrix (i.e., each row has a single nonzero
entry of value

√
d/k in a uniformly random location). Then

∀y ∈ Rd, ‖y‖2 = 1, ‖y‖∞ ≤ λ, Pr
S

[‖Sy‖22 /∈ (1± ε)] ≤ 2e−2ε
2k/(d2λ4).

Exer: Prove this lemma using Hoeffding’s inequality. Would you get the same bound using
Chebyshev’s inequality?

Proof of Theorem 7: Was discussed in class and basically follows from Lemmas 9 and 10.
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