Randomized Algorithms 2023A - Problem Set 2

Robert Krauthgamer and Moni Naor

Due: Jan. 16, 2023

1. Given parameters d, ε, n, design a randomized linear map $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{t}$ into dimension $t=$ $O\left(\varepsilon^{-2} \log n\right)$, such that for every n points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$, with high probability (at least 0.9), L preserves the area of every triangle $\left\{x_{i}, x_{j}, x_{k}\right\}$ within factor $1 \pm \varepsilon$.
(a) Prove that every set $S \subset \mathbb{R}^{d}$ of n points has a set $S^{\prime} \subset \mathbb{R}^{d}$ of $n^{\prime}=O\left(n^{3}\right)$ points, such that if a linear map L preserves the area of every right-angle triangle in $S \cup S^{\prime}$ within factor $1 \pm \varepsilon$, then L also preserves the area of every triangle in S within factor $1 \pm \varepsilon$.
Hint: For every triangle, find a point that "breaks" that triangle into two right-angle triangles.
(b) Show that when L is randomized as above, for every set of $n+n^{\prime}$ points in \mathbb{R}^{d}, with high probability, the area of every right-angle triangle $\left\{y, y^{\prime}, y^{\prime \prime}\right\}$ among these points is preserved within factor $1 \pm \varepsilon$.
Hint: Denote the triangle's sidelengths by $v=y^{\prime}-y$ and $w=y^{\prime \prime}-y$, and write the area of the image triangle using their image sidelengths $L v$ and $L w$, e.g., $\frac{1}{2} \sqrt{\|L v\|^{2}\|L w\|^{2}-\langle L v, L w\rangle^{2}}$.
2. Given parameters d, ε, δ, consider a randomized linear mapping $L=G / \sqrt{k}$ where $G \in \mathbb{R}^{k \times d}$ is a random matrix of standard Gaussians for a suitable $k=O\left(\varepsilon^{-2} \log \frac{1}{\delta}\right)$.
Prove that

$$
\begin{equation*}
\forall 0 \neq v \in \mathbb{R}^{d}, \quad \mathbb{E}\left[\max \left\{0,\left|\frac{\|L v\|}{\|v\|}-1\right|-\varepsilon\right\}\right] \leq \delta . \tag{1}
\end{equation*}
$$

Hint: This L is exactly the JL construction seen in class but for general δ (instead of $\delta=1 / n^{3}$). First, prove a weaker version of (1), without the absolute value, by modifying the claim seen in class to show that if Y has a chi-squared distribution with parameter k, then

$$
\forall s \geq 2, \quad \operatorname{Pr}[Y \geq s k] \leq e^{-s k / 100}
$$

Then bound the other case (i.e., where the absolute-value operator is replaced by negation). Finally, fully prove (1) by combining the two cases, e.g., using

$$
\forall z \in \mathbb{R}, \quad \max \{0,|z|-\varepsilon\} \leq \max \{0, z-\varepsilon\}+\max \{0,-z-\varepsilon\} .
$$

Remark: You can use the following bound for deviation below the expectation (it is similar to what was seen in class, no need to prove it):

$$
\forall \varepsilon \in(0,1), \quad \operatorname{Pr}\left[Y \geq(1-\varepsilon)^{2} k\right] \leq e^{-\varepsilon^{2} k / 2} .
$$

3. Given parameters d and ε, consider a randomized linear mapping $L=G / \sqrt{k}$ where $G \in \mathbb{R}^{k \times d}$ is a random matrix of standard Gaussians for a suitable $k=O\left(\varepsilon^{-2} \log \frac{1}{\varepsilon}\right)$.
Prove that for every n points $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$,

$$
\mathbb{E}\left[\sum_{i, j \in[n]}\left\|L x_{i}-L x_{j}\right\|\right] \in(1 \pm \varepsilon) \sum_{i, j \in[n]}\left\|x_{i}-x_{j}\right\| .
$$

Notice that the target dimension is independent of n.
Hint: Use the preceding question.

Extra credit:

4. Let $\|A\|$ be the spectral norm (i.e., largest singular value), which is also the operator norm, i.e., $\|A\|=\sup \{\|A x\|:\|x\|=1\}=\sup \left\{y^{\top} A x:\|x\|=\|y\|=1\right\}$.

Let $S \in \mathbb{R}^{s \times n}$ be an (ε, δ, d)-OSE matrix. Prove that for every $A, B \in \mathbb{R}^{n \times m}$ where $\operatorname{rank}(A)+$ $\operatorname{rank}(B) \leq d$, with probability at least $1-\delta$,

$$
\left\|(S A)^{\top}(S B)-A^{\top} B\right\| \leq O(\varepsilon) \cdot\|A\|\|B\| .
$$

Hint: Assume WLOG that $\|A\|=\|B\|=1$, consider an orthonormal basis U for the column space of $\{A, B\}$, and use the bound seen in class for $\langle S x, S y\rangle-\langle x, y\rangle$.

