Randomized Algorithms 2023A – Problem Set 3

Robert Krauthgamer and Moni Naor

Due: Feb. 13, 2023

1. We saw in class a randomized algorithm (call it Algorithm E+) with success probability 3/4 for counting DNF solutions. (Here, success means that the output is within factor $1 \pm \varepsilon$ of |S|, the number of satisfying assignments of the input DNF formula.)

Consider now Algorithm E++, which repeats that Algorithm E+ independently $t = O(\log \frac{1}{\delta})$ times and then reports the *median* of their outputs. Prove that Algorithm E++ has success probability $1 - \delta$ (again, success means that the output is within factor $1 \pm \varepsilon$ of |S|).

Hint: Use concentration bounds to count the number of "successes".

2. Prove the following three lemmas (mentioned in the lecture notes), from the construction seen in class of a strong coreset Y of a set $X \subset \mathbb{R}^d$ (for 1-median) via Importance Sampling. Recall that Y is a multiset of m iid samples from this distribution, and \hat{Z} is the Importance Sampling estimator (without repetitions), i.e., $\hat{Z} = \frac{\|y-c\|}{q(y)}$ for one sample $y \in Y$ and an arbitrary $c \in \mathbb{R}^d$.

Lemma 5: $\hat{Z} \leq S(X) \cdot \mathbb{E}[\hat{Z}]$ with probability 1.

Hint: It is quite immediate.

Lemma 6: The success probability in Lemma 4 can be improved to $1 - \delta$ by using $m \ge L\varepsilon^{-2} \log \frac{1}{\delta}$ for a suitable constant L > 0, i.e.,

$$\forall c \in \mathbb{R}^d$$
, $\Pr\left[\frac{1}{m}\sum_{y \in Y} \frac{\|y - c\|}{q(y)} \in (1 \pm \varepsilon) \sum_{x \in X} \|x - c\|\right] \ge 1 - \delta.$

Hint: Use a concentration bound and Lemma 5.

Lemma 8: If $m \ge L\varepsilon^{-2}\log \frac{1}{\delta}$, then $w(Y) = \frac{1}{m}\sum_{y \in Y} \frac{1}{q(y)}$ satisfies

 $\Pr[w(Y) \in (1 \pm \varepsilon)n] \ge 1 - \delta.$

Hint: Show that all $x \in X$ satisfy $\frac{1}{q(x)} \leq O(n)$, then use a concentration bound.

- 3. Show that in the Cuckoo Graph when r = 2n it is not likely that there are components of size larger than $O(\log n)$.
- 4. Recall that we used the method of compression to analyze Cuckoo Hashing. Use the method to show that with high probability, a random graph $G_{n,1/2}$ oes not contain a clique or independent set of size larger than $O(\log n)$.