Advanced Algorithms - Handout 11

Robert Krauthgamer

May 1, 2008

1 Administrative issues

- There will be NO class the next two weeks (May 8 and May 15). Thus there are two more classes, on May 22 and 29.
- The time and/or place of the last class (May 29) is likely to change. Stay tuned!
- Exam: Thursday June 12, 2008, same time and place as the course (2pm in Ziskind 1).

2 Today's topics

Randomized rounding of linear programming relaxations:

- $O(\log n)$ approximation or Set Cover
- 3/4-approximation for MAX-SAT.

3 Homework

The homework deals with the paper "Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming", by Goemans and Williamson, JACM 1995. You can find it here:

- http://dx.doi.org/10.1145/227683.227684
- http://www-math.mit.edu/~goemans/maxcut-jacm.pdf

Read up to section 3.1 (inclusive), and section 4 up to section 4.1 (inclusive). Verify to yourself that you understand the following:

- Definition of the MAX-CUT problem
- The program (P), why it is a relaxation of MAX-CUT and how to solve it in polynomial time using semidefinite programming.
- The randomized rounding procedure and how to implement it in polynomial time.
- The approximation guarantee, mostly the analysis of the expected value of the resulting cut, (compared to the value of the SDP).

Some clarifications:

- The unit sphere S_{n} is the set of all vectors $v \in \mathbb{R}^{n}$ of unit length (i.e. $\|v\|_{2}=1$).
- Fact: Drawing a vector z uniformly at random from S_{n} can be done by letting $x \in \mathbb{R}^{n}$ have each of its coordinates be chosen independently at random according to Gaussian distribution $N(0,1)$ and then taking $z=\frac{x}{\|x\|_{2}}$. (This is said also in the paragraph before Section 3.) Observation: This distribution is invariant under orthogonal transformations (because it maps the sphere onto itself), and thus in the Gaussian representation we can choose x above according to any orthonormal basis of \mathbb{R}^{n}.

Problem set:

1. Show a MAX-CUT instance for which the program (P) has integrality gap <0.99. (Recall that integrality gap is the ratio between the optimum max-cut and the SDP value.)
2. Recall that $W_{\text {tot }}=\sum_{i<j} w_{i j}$. Show that in instances where the maximum cut has value at least $(1-\varepsilon) W_{\text {tot }}$, the randomized algorithm (in the paper) obtains approximation factor $(1-O(\sqrt{\varepsilon}))$.
Hint: When $\alpha>0$ is sufficiently small, use the approximation $\cos (\alpha) \approx 1-\frac{1}{2} \alpha^{2}$ that follows e.g. from Taylor's expansion.
3. Show that the following constraints (called triangle inequality) are valid for MAX-CUT and thus can be added to (P) :

$$
\begin{array}{ll}
\left(v_{i}-v_{j}\right) \cdot\left(v_{k}-v_{j}\right) \geq 0 & \forall i, j, k \in V \\
\left(v_{i}+v_{j}\right) \cdot\left(v_{k}+v_{j}\right) \geq 0 & \forall i, j, k \in V
\end{array}
$$

What does the first constraint say about the angle formed by v_{i}, v_{j}, v_{k} (i.e. the angle has two rays emanating from v_{j} towards v_{i} and v_{j}). Give a similar geometric interpretation for the second constraint?
4. Let (P^{\prime}) be the SDP obtained from (P) with the triangle inequalities. Show that given a solution of P^{\prime} that lies in two dimensions, i.e. $v_{i} \in \mathbb{R}^{2}$ for all $i \in V$, we can find in polynomial time a cut (S, \bar{S}) whose value is at least the value of (P^{\prime}). (In other words, such a solution can be rounded with "loss factor" 1.)

Hint: show that for 3 such vectors, at least two of them must lie on the same line (hence they are either identical or exactly opposite of each other).

