Advanced Algorithms – Handout 2

Robert Krauthgamer

February 21, 2008

1 Today's topics

- Continue from last time: The geometry of LP (the notion of a vertex)
- Bases (the notion of a basic feasible solution)
- The Simplex algoithm (a general description)

2 Homework

- 1. Definition: A feasible solution x for a minimization problem is called a *local optimum* if x has an open neighborhood N_x such that no feasible $z \in N_x$ has a smaller objective value than x. Prove that in every LP, every local optimum is also an optimal solution to the LP (aka global optimum). (Hint: Show first that the set of feasible solutions is convex, i.e. for every two points $x, y \in P$, the entire line segment between them $\{tx + (1 - t)y : 0 \le t \le 1\} \subseteq P$.)
- 2. Assume the LP min{ $c^t x : Ax = b, x \ge 0$ } has finite value and all its coefficients are integral. Provide an upper bound M on the optimal value of this LP, where M may depend on n, on m, on $\alpha = \max_{ij} |a_{ij}|$, on $\beta = \max_i |b_i|$, and on $\gamma = \max_j |c_j|$. (Hint: Show first an $\hat{M} = \hat{M}(m, \alpha, \beta)$ such that every basic feasible solution x satisfies: $\max_j |x_j| \le \hat{M}$.)
- 3. Let x be a basic feasible solution of $P = \{x : Ax = b, x \ge 0\}$. Show that there exists a cost vector c such that x is the unique optimal solution of the LP min $\{c^t x : x \in P\}$.