Advanced Algorithms – Handout 8

Robert Krauthgamer

April 3, 2008

1 Today's topics

- Integer linear programs and relaxations
- Integrality gap
- Half-integrality of LP
- Total unimodular LP
- Examples: matching and vertex-cover, max-flow and min-cut, independent set
- Strengthening the LP (e.g. adding clique constraints)

2 Homework

- 1. Prove that the vertex-arc incidence matrix of a directed graph is totally unimodular.
- 2. Show that the vertex-cover LP always has an optimal solution that is half integral (i.e. all variables have values $\in \{0, \frac{1}{2}, 1\}$). (One approach: Replace every variable x_j by $\frac{1}{2}(x_j^+ x_j^-)$, using two new variables $0 \le x_j^+ \le 1$ and $-1 \le x_j^- \le 0$.) Is it true every bfs of the vertex-cover LP is half-integral?
- 3. Prove that the LP below is a relaxation of the minimum spanning tree problem (in an undirected graph G = (V, E) and edge weights $w_{ij} \ge 0$), and that every integral feasible solution of it is a spanning tree. Then show for this LP the largest integrality gap you can.

minimize $\sum_{ij\in E} w_{ij}x_{ij}$ subject to $\sum_{ij\in\delta(S)} x_{ij} \ge 1$ for every subset of vertices $S \neq \emptyset, V$ $x_{ij} \ge 0$ for all $ij \in E$.

Here, $\delta(S)$ is the set of edges with exactly one endpoint in S, i.e. edges in the cut (S, \overline{S}) , and we use only one variable $x_{ij} = x_{ji}$ for every edge $ij \in E$.