Complexity Theory: Exercise 2

April 21, 2015

- 1. (Diagonalization) Let $coNTIME(t(n)) = \{\bar{L} : L \in NTIME(t(n))\}$. Show that there is a language $L \in coNTIME(n^5)$ such that $L \notin NTIME(n^2)$. Give a direct proof.
- 2. (Padding arguments) Let L be a language and $t: N \to N$ be a function such that t(n) > n. We define $L_t = \{1^{t(|x|-|x|-1)}0 \circ x : x \in L\}$ and call it the padded version of L using t.
 - (a) Show that if t(n) is a valid time function then $L \in TIME(t(n))$ implies $L_t \in TIME(n)$.
 - (b) Show that if $NTIME(n) \subseteq TIME(n^2)$ then $NTIME(n^5) \subseteq TIME(n^{10})$.
 - (c) Show that if $NTIME(n) \subseteq TISP(n^{1.2}, n^{0.2})$ then $NTIME(n^{10}) \subseteq TISP(n^{12}, n^2)$.
 - (d) Let $NEXP = \bigcup_{c=1}^{\infty} NTIME(2^{n^c})$. Show that if $NEXP \neq EXP$ then $NP \neq P$. (Hint: use padding).

3. (Oracles)

- (a) Show that $NP^{PSPACE} = PSPACE$. Conclude that $P^{PSPACE} = NP^{PSPACE}$.
- (b) Let $Exact-Clique = \{(G,k): G \text{ is a graph, } k \text{ is an integer, and the largest clique in } G \text{ is of size } k\}$. Show that $Exact-Clique \in P^{NP}$.
- 4. (Definition of the polynomial time hierarchy using oracles) Show that $\Sigma_2^p = NP^{NP}$. (Hint: the hard containment is that $NP^{NP} \subseteq \Sigma_2^p$. If you can't solve the general case try to prove the special case in which the NP^{NP} machine makes only one call to its oracle.)