
Dispersers for Affine Sources with Sub-Polynomial Entropy

Ronen Shaltiel
Department of computer science

University of Haifa
Haifa, Israel

Email: ronen@cs.haifa.ac.il

Abstract— We construct an explicit disperser for affine sources
over Fn

2 with entropy k = 2log
0.9 n = no(1). This is a polynomial

time computable function D : Fn
2 → {0, 1} such that for every

affine space V of Fn
2 that has dimension at least k, D(V) = {0, 1}.

This improves the best previous construction of Ben-Sasson and
Kopparty (STOC 2009) that achieved k = Ω(n4/5).

Our technique follows a high level approach that was developed
in Barak, Kindler, Shaltiel, Sudakov and Wigderson (J. ACM 2010)
and Barak, Rao, Shaltiel and Wigderson (STOC 2006) in the
context of dispersers for two independent general sources. The
main steps are:

• Adjust the high level approach to make it suitable for affine
sources.

• Implement a “challenge-response game” for affine sources (in
the spirit of the two aforementioned papers that introduced
such games for two independent general sources).

• In order to implement the game, we construct extractors
for affine block-wise sources. For this we use ideas and
components by Rao (CCC 2009).

• Combining the three items above, we obtain dispersers for
affine sources with entropy larger than

√
n. We use a recursive

win-win analysis in the spirit of Reingold, Shaltiel and
Wigderson (SICOMP 2006) and Barak, Rao, Shaltiel and
Wigderson (STOC 2006) to get affine dispersers with entropy
less than

√
n.

Keywords-Randomness extractors; Dispersers; Pseudorandom-
ness; Explicit construction;

1. INTRODUCTION

This paper continues an active and long line of research
that attempts to construct explicit dispersers and extractors
for various families of “imperfect random sources”. These
objects have found many applications in diverse fields of
computer science and mathematics. The reader is referred
to survey articles [12], [16], [20], [21].

Definition 1.1 (dispersers and extractors). Let C be a family
of distributions over {0, 1}n over some set Ω.

• D : Ω → {0, 1}m is a disperser for C with error ϵ if
for every X ∈ C, |D(Supp(X))| ≥ (1 − ϵ)2m (where
Supp(X) denotes the support of X). In this paper we
will be mostly interested in zero-error dispersers for
m = 1.

This research was supported by ERC starting grant 279559, BSF grant
2010120 and ISF grants 686/07 and 864/11.

• E : Ω → {0, 1}m is an extractor for C with error ϵ
if for every X ∈ C, E(X) is ϵ-close to the uniform
distribution. (where two distributions X,Y over the
same set Ω are ϵ-close if for every event A, |Pr[X ∈
A]− Pr[Y ∈ A]| ≤ ϵ).

Throughout the paper we use the term “source” and
“distribution” interchangeably. Many families of sources are
considered in the literature, and the goal of this research area
is to design explicit (that is polynomial time computable)
extractors and dispersers for interesting families. The reader
is referred to the survey article [18] and to the introductions
of [9], [17] for an overview of the classes of sources
considered in the literature.

Dispersers and extractors for affine sources: In this
paper we consider affine sources. Let Fq be a finite field of
size q, and set Ω = Fn

q . A dimension k affine space in Fn
q is

a set V =
{∑

1≤i≤k aixi + x′
}

where x1, . . . , xk ∈ Fn
q are

linearly independent vectors, a1, . . . , ak ∈ Fq are scalars,
and x′ ∈ Fn

q is the “shift vector”. An affine source X of
dimension k is a distribution that is uniformly distributed
over some affine space V of Fn

q with dimension k. Note
that the dimension of an affine source X is also given by
H(X)/ log q where H is the Shannon entropy function.

Past work on dispersers and extractors for affine sources
considers two different parameter regimes: For “large fields”
with q = poly(n), Gabizon and Raz, [8] constructed extrac-
tors that extract almost all the entropy from affine sources
of dimension k for any k ≥ 1. Gabizon and Shaltiel [9]
extended this result to give zero-error dispersers with large
output length for the same parameters. DeVos and Gabizon
[7] give a tradeoff between the dimension k and the field
size q in which decreasing q requires increasing k.

The other parameters regime is that of “small fields”,
and in the extreme, the field F2. We focus on this setting
in the remainder of the paper and identify F2 with {0, 1}.
Note that in this setup the entropy and dimension of affine
sources coincide. Constructing dispersers and extractors for
affine sources over F2 turns out to be a challenging problem.
Bourgain [5] constructed extractors for affine sources with
entropy k = δn for every δ > 0. Subsequently, Yehudayoff
[22] and Li [11] constructed extractors for affine sources of
entropy Ω(n/

√
log log n). Rao [14] constructed extractors

that can handle much lower entropy (k = polylogn) but
only for a restricted sub-family of affine sources called
“low-weight sources”. Li [10] constructed extractors for two
independent affine sources, where each one has entropy
slightly larger than

√
n. The best known construction of

dispersers for affine sources is by Ben-Sasson and Kopparty
[3] and can handle affine sources with entropy Ω(n4/5).
We also mention that Ben-Sasson and Zewi [4] showed
that extractors for affine sources can be used to construct
2-source extractors, and that Demenkov and Kulikov [6]
showed that dispersers for affine source yield certain circuit
lower bounds.

Our results: Note that all previous constructions of
extractors and dispersers for general affine sources, need
entropy at least

√
n. In this paper we construct dispersers

for affine sources with entropy k=no(1).

Theorem 1.2. There is a polynomial time computable func-
tion Disp : {0, 1}n → {0, 1} that is a zero-error disperser
for affine sources of entropy k = 2log

0.9 n.

Theorem 1.2 is stated for extracting a single bit. Some of
the aforementioned constructions [5], [11], [22] can extract
many bits. We remark that using the technique of Gabizon
and Shaltiel [9], any zero-error disperser for affine sources
that extracts 2 log n bits, can be “pushed” to extract almost
all the entropy with zero-error. It seems that our technique
can be extended to show that for every δ > 0 there is a
constant cδ > 0 and an explicit disperser for k = nδ which
extracts cδ · log logn bits. However, at this point we do not
know how to extract 2 log n bits.

1.1. Technique

In order to explain our approach, we need the following
notion of affine subsources.

Definition 1.3. Let X be an affine source. An affine source
X ′ is an affine subsource of X with deficiency d if there
exists a linear function L of rank d and a possible value
for v for L(X) such that X ′ is uniformly distributed over
{x ∈ Supp(X) : L(x) = v}.

Our starting point is the following trivial observation:

Fact 1.4 (Succeeding on an affine subsource). Let X be an
affine source and let X ′ be an affine subsource of X . If Disp
is a disperser for X ′ then Disp is a disperser for X .

Let P be some property of affine sources. A paradigm for
constructing dispersers for affine sources is to show that:

• Every affine source X with sufficiently large entropy
has an affine subsource with property P .

• There are explicit dispersers for affine sources with
property P .

Let X be an affine source. We will divide X ∈ {0, 1}n
into t blocks X1, . . . , Xt ∈ {0, 1}n/t and consider properties
P of the form “there exist some block i such that Xi has

large entropy” (or more generally that the source is nicely
structured in the sense that the entropy distribution between
different blocks satisfies some condition). For properties P
as above, we can often show that any affine source X with
sufficiently large entropy has an affine subsource X(0) that
has property P . Furthermore, it is often possible to construct
dispersers (or even extractors) for affine sources that have
property P , at least assuming that we know the index i. This
does not seem helpful as we get only one sample from the
source and cannot hope to find i by looking at one sample.

We follow an approach of [1] and will try to design
a procedure FindBlock(x) with the property that every
affine source X(0) that has property P , has a small de-
ficiency affine subsource X ′ on which FindBlock(X ′)
identifies index i correctly, with high probability (that is
Pr[FindBlock(X ′) = i] = 1 − o(1)). Properties P that we
will consider are preserved when conditioning into small
deficiency affine subsources, and so X ′ also has property P
with respect to the same index i.

Putting things together, let Disp(x, i) be a disperser
for affine sources with property P (that needs to know
the good index i). We have that FindBlock(X ′) correctly
identifies the good index i with high probability, and so
after computing i ← FindBlock(x) we can apply supply i
to Disp and compute Disp(x, i). We obtain a disperser for
X ′, which by Fact 1.4 implies is also a disperser for the
initial general affine source X .

In order to design procedure FindBlock, we follow the
high level approach of [1], [2] and design a “challenge-
response game” for affine sources. On the one hand, we
have an advantage over [1], [2] as affine sources are easier to
work with than general sources: We can work with Shannon
entropy (rather than so called “min-entropy”) and therefore
have a well behaved notion of conditional entropy. On the
other hand, we have only one source (rather than two),
and we use a very restrictive notion of subsources (as we
only allow affine subsources). This means that we need to
preserve affinity whenever the analysis wants to show the
existence of a good subsource. This is in contrast to [1], [2]
that work with general sources (that allow distributions over
general subsets rather than affine subspaces).1

We believe that in addition to the technical contribution
of constructing affine dispersers, this paper makes a con-
ceptual contribution in that it demonstrates the usability
of the approach of [1], [2] in other settings. Furthermore,

1We remark that in an early version of [1] there was a construction
of a disperser for affine sources with entropy δn for δ > 0. While that
construction is the inspiration for this one, the approach used there is very
different form the one used here. More specifically, the idea there is to
try to reduce the case of affine sources to that of multiple independent
sources. The analysis used is very delicate, because it needs to consider
general subsources rather than only affine ones. We also remark that the
approach of that paper does not make sense for k <

√
n, and even for

k >
√
n it requires very strong components for general sources (that we

do not know to construct for k = o(n)).

our construction and its analysis are simpler, and require
significantly less details and components than that of [1],
[2]. It is our view that presenting the approach in the setting
of affine sources, makes it easier to grasp. We hope that
this will allow subsequent research to apply the method
described above for other explicit construction problems.

2. PRELIMINARIES

We use small letters as much as possible as we reserve
capital letters for random variables. Thus for example, for
a matrix a that is defined as a function of x, we use A to
denote the random variable a(X) for a random variable X
that is clear from the context. For a random variable X and
an event E with positive probability we use (X|E) to denote
the distribution of random variable X when the probability
space is conditioned on E. The entropy rate of a source X
over {0, 1}n is H(X)/n. We use [n] to denote {1, . . . , n}.
For x ∈ {0, 1}n and s ⊆ [n] we define xs to be the |s|
bit string given by restricting x to the indices in s. We say
that a matrix is r × c if it has r rows and c columns, and
use {0, 1}r×c to denote the space of such matrices. Thus,
{0, 1}r×c, {0, 1}c×r and {0, 1}r·c denote different things.
For a matrix x, xi denotes the i’th row of x, and for p ≤ c,
slicep(x) denotes the r×p matrix obtained by keeping only
the first p columns of x.

• Somewhere-random sources: A distribution X is r× c,
η-somewhere random if X is over {0, 1}r×c and there
exists i ∈ [r] such that Xi is η-close to uniform.
(This is equivalent to saying that X is η-close to a 0-
somewhere random distribution). We omit η if it is zero,
and omit the term “r×c” if it is clear from the context.
An affine somewhere random source is a somewhere-
random source which is affine (when interpreted as a
distribution over {0, 1}r·c).

• Somewhere-random extractors: A function E :
{0, 1}n → {0, 1}r×c is a somewhere-extractor for a
family C with error η, if for every distribution X ∈ C,
E(X) is η-somewhere random.

• Block-wise sources: A distribution X over {0, 1}b×n

is an affine block-wise source with entropy threshold
k if it is an affine source (when interpreted as a
distribution over {0, 1}b·n) and for every i ∈ [b],
H(Xi|X1, . . . , Xi−1) ≥ k.

• Linear seeded strong extractors: A linear seeded strong
(k, ϵ)-extractor is a function E : {0, 1}n × {0, 1}d →
{0, 1}m such that for every y ∈ {0, 1}d, E(·, y) is
linear, and furthermore for every distribution X that
is uniform over a subset of size 2k, (E(X,Y), Y) is
ϵ-close to uniform (where Y is independent for X and
is uniform over {0, 1}d).
Useful properties of affine sources: Throughout the

paper we make constant use of the following:
• If X is an affine source with H(X) ≥ k and E is a

linear seeded strong (k, ϵ)-extractor then for a (1−2ϵ)-
fraction of y ∈ {0, 1}d, E(X, y) is completely uniform.

• If X is an affine source with H(X) ≥ k and X ′ is a
deficiency d affine subsource of X then H(X ′) ≥ k−d.
If X over {0, 1}2×n is an affine block-wise source with
entropy threshold k and X ′ is a deficiency d affine
subsource of X then X ′ is an affine block-wise source
with entropy threshold k− d. We also use the fact that
for every possible value v of X1, H(X2|X1 = v) ≥ k.
Organization of the paper: Due to space limitations

this extended abstract does not contain a proof of Theorem
1.2. The proof is provided in the full version. Instead, we
give a full proof of a weaker result in which the entropy
threshold is k = n1−ρ for some constant ρ > 0.

In Section 3 we show how to implement a “challenge-
response game” for affine sources (assuming we can con-
struct certain somewhere-extractors for affine sources). In
Section 4 we show how the challenge-response game can
be used to find blocks with large entropy, and to construct
dispersers for 2-block affine block-wise sources. We use
this to implement a dispersers for affine sources with large
entropy threshold. In Section 5 we explain how to construct
extractors for affine block-wise sources (the full proof is
deferred to the full version). We also show how extractors
for affine block-wise sources can be used to construct
somewhere extractors for affine sources (that we need in
order to implement the challenge-response game). In Section
6 we give a high level overview of the ideas used to get
dispersers for low entropy.

3. CHALLENGE-RESPONSE GAMES FOR AFFINE SOURCES

Let X be an affine source over {0, 1}n with H(X) ≥ δn
for some rate δ > 0 which is not necessarily a constant, and
let s ⊆ [n] be a subset of size n′. We typically think of Xs

as a block of X , and would like to distinguish between two
cases:

• H(Xs) = 0 (the block Xs is “empty”).
• H(Xs) ≥ δn′ (the block Xs has entropy rate compa-

rable to the initial source X).
Obviously, there does not exist a procedure which receives
one sample from X and distinguishes the two cases. In this
paper, we show how to implement a test that achieves a task
with similar flavor. (We will require somewhere-extractors
for affine sources as an ingredient).

We start with some high level intuition. We imagine the
following game: Block Xs tries to “convince” the source X
that it has high rate. For this purpose, block Xs generates
a “challenge matrix” ch(Xs) where ch is a somewhere-
random extractor for rate slightly smaller than δ so that
ch(Xs) is (close to) somewhere random if H(Xs) ≥ δn′.
The source X generates polynomially many response ma-
trices r1(X), . . . , rn2(X) such that at least one of them is
completely uniform. This can be done using a linear seeded

strong extractor. The challenge of Xs is responded if there
exists a response matrix that equals the challenge matrix.
If the challenge is not responded then Xs “wins” (and we
say that the test passes). This serves as a demonstration
that H(Xs) ≥ δn. Intuitively, any of the n2 response
matrices is very unlikely to hit the challenge matrix which
is somewhere random. To make this intuition precise we
will furthermore show that the challenge matrix is (close
to) somewhere random even conditioned on every specific
response matrix. This allows us to show that the test passes
with high probability if H(Xs) ≥ δn′.

We would like to show that the test fails with high
probability if H(Xs) = 0. However, this does not hold
and indeed we cannot expect to distinguish the two cases
using a single sample. We can however show that the test
fails with small positive probability as the random response
matrix has positive probability to be equal to the challenge
matrix (as the latter is fixed if H(Xs) = 0). The crux of the
approach is to show that if X is a source with H(X) ≥ δn
and H(Xs) = 0, then there exists an affine subsource X ′

of X with low deficiency (so that H(X ′) ≈ δn) such that
on a random sample from X ′, the challenge is responded
with probability one. The interpretation is that the test does
correctly identify that the block is empty on the source X ′

(which is of the same type as X).

As explained in the introduction, when constructing dis-
persers we can imagine that X = X ′ if we construct a
disperser for X ′. Thus, the statement above suffices for our
purposes and it is helpful to imagine that we do have a test
that distinguishes the two cases using one sample.

The construction appears below. We formalize the intu-
ition above in Section 3.1 and demonstrate its usability in
Section 4.

Construction 3.1 (Challenge-Response procedure
CR(x, s)).

• parameters: integers n, ℓ, kmin ≥ (logn)a and p ≤
pmax ≤ kαmin/ℓ for some constants a > 1, α > 0 to
be determined later.

• inputs: x ∈ {0, 1}n and a “block” s ⊆ [n]. let n′ = |s|
to denote the length of the block.

• ingredients:

– A linear seeded strong (kmin, 1/4)-extractor E :
{0, 1}n × {0, 1}O(log n) → {0, 1}ℓ·pmax . By [19]
there are explicit linear seed strong extractors
E which for every kmin > (logn)a (for some
constant a > 1) use seed length 2·log n and output
kαmin bits for some α > 0. We fix E to be this
extractor, and note that we previously required that

ℓ · pmax ≤ kαmin.2

– A function ch : {0, 1}n′ → {0, 1}ℓ′×pmax for some
ℓ′ ≤ ℓ. (We use several choices for ch in the final
construction and so we think of its as a parameter
that is provided to the procedure CR).

• Operation: of procedure CRch,p(x, s)

– Compute the “challenge matrix” c = ch(xs)
which is an ℓ′ × pmax matrix. We pad c with
dummy zero rows so that it as an ℓ× pmax matrix
if necessary.

– For all y ∈ {0, 1}2 log n compute r(y) = E(x, y)
interpreted as an ℓ× pmax “response matrix”.

– We say that “the challenge is responded at length
p” if there exists a y ∈ {0, 1}2 log n such that
slicep(c) = slicep(r(y)), and in that case the
output of the procedure CRch,p(x, s) is defined to
be ‘fail’ and otherwise the output is defined to be
‘pass’.3

Construction 3.1 follows the intuitive description above if
p = pmax so that the function slicep is moot. We think of p
as a “confidence” that CR has when it fails. More formally,
note that if p1 ≤ p2 ≤ pmax and CRch,p2

(x, s) = ‘fail′ then
CRch,p1

(x, s) = ‘fail′. This parameter plays an important
role in the disperser construction (and we explain this role
later on). However, at this point, we suggest that the reader
ignores parameter p and assume that CR is always applied
with the highest confidence parameter p = pmax.

3.1. Properties of CR

We now show that CR fails on empty blocks (on some
subsource, as explained above). This is captured in the
second item of the lemma below. We will explain the role
of the first item later on. We stress that the Lemma below
makes no specific requirements on the function ch (other
than being a function of the form specified in Construction
3.1).

Lemma 3.2 (CR fails on empty blocks). Let
n, ℓ, p, pmax, kmin and ch be as in Construction 3.1.

1) For every affine source X over {0, 1}n with
H(X|XS) ≥ kmin, Pr[CRch,p(X, s) = ‘fail′] ≥
2−ℓ·p.

2The construction described below will go over all seeds of E and
therefore it is crucial that E has seed O(log n). The fact that the leading
constant in the seed length is 2 is not crucial. We remark that in the
construction of [19], the constant 2 can be replaced with any constant
larger than 1 (yielding better efficiency when going over all seeds). We
also remark that if we allow seed length O(logn) for an arbitrary leading
constant, we could also use an alternative construction from [19] which has
output length k1−α for some constant α > 0.

3We choose to highlight ch, p in the notation above as these param-
eters will vary in the disperser construction, while the other parameters
n, ℓ, pmax, kmin will be the same in all applications of CR. This will
simplify the notation later on.

2) For every affine source X over {0, 1}n with H(X) ≥
kmin and H(Xs) = 0 there exists a defi-
ciency ℓ · p affine subsource X ′ of X such that
Pr[CRch,p(X

′, s) = ‘fail′] = 1.

Proof: We first note that the first item follows from
the second one as for every possible fixing of x′ of Xs we
have Y = (X|Xs = x′) satisfies H(Ys) = 0 and H(Y) ≥
kmin and we can apply the second item on Y and conclude
that CR fails with probability one on an affine subsource
Y ′ which has deficiency ℓ · p and thus has measure 2−ℓ·p

according to Y .
We now prove the second item. As H(X) ≥ kmin

and E is a linear seeded strong extractor with en-
tropy threshold kmin, there exists a seed y such that
R(y) = E(X, y) is uniform. Let T denote the event
{slicep(E(X, y)) = slicep(ch(Xs))}. We have that ch(Xs)
is fixed and therefore T has probability 2−ℓ·p. Let X ′ =
(X|T) and note that X ′ is an affine subsource of X with
deficiency ℓ · p which satisfies the required property.

The next lemma captures the intuition that CR passes
on blocks with high entropy. In the aforementioned in-
tuitive description, we were planning to use CR with a
function ch which is a somewhere-random extractor. Un-
fortunately, we will not always have an explicit construction
of a somewhere-random extractor with suitable parameters.
Therefore, we state a weaker requirement on ch that still
suffices for our purposes.

Definition 3.3. Let X,Y be affine sources such that Y =
f(X) for some function f . We say that Y is somewhere
random with error η and resiliency r with respect to X if
for every linear function L of rank ≤ r, and every possible
output v of L(X), the distribution (Y |L(X) = v) is η-
somewhere random.

Lemma 3.4 (CR passes on blocks with high entropy). Let
n, ℓ, p, pmax, kmin and ch be as in Construction 3.1. For
every affine source X over {0, 1}n such that ch(Xs) is
somewhere random with error η and resiliency ℓ · p with
respect to X , Pr[CRch,p(X, s) = ‘pass′] ≥ 1−n2·(2−p+η).

In the informal discussion above we were planning to use
CR to test whether H(Xs) ≥ k′ for some threshold k′. We
now explain that a somewhere-extractor ch with suitable
parameters indeed meets the requirement of Lemma 3.4 and
yields the aforementioned test. More precisely, if H(Xs) ≥
k′ and ch is a somewhere-extractor for affine sources with
entropy k′−ℓ ·p that has error η, then ch(Xs) is somewhere
random with error η and resiliency ℓ · p with respect to X
as required in the lemma, and therefore CRch,p(X, s) passes
with high probability. We will always choose parameters so
that ℓ · p = o(k′) (and note that this dictates having the
number of output rows ℓ in the output of ch satisfy ℓ≪ k),
and then, a somewhere-extractor ch for affine sources with
entropy (1 − o(1)) · k′ can be used to apply CR and test

whether blocks have entropy at least k′.
Loosely speaking, the advantage of the weaker condition

in Lemma 3.4 is that rather than requiring that ch(Y) is
somewhere random for all affine sources Y , it only requires
that ch(Xs) is somewhere random on small deficiency affine
subsources of the source X that we are interested in. This
is helpful as we will be interested in sources X that have
special properties and it will be easier to construct a function
ch that performs well on such sources.

Proof: (of Lemma 3.4) For every y ∈ {0, 1}2 log n of E,
the function L(x) = slicep(E(x, y)) is linear and has rank
≤ ℓ · p. By the guarantee on ch, for every possible value
v of L(X), (ch(X)|L(X) = v) is η-somewhere random.
Therefore, slicep(ch(X)) is somewhere random after fixing
L(X) = slicep(R(y)) = slicep(E(X, y)). It follows that
for every y and v, Pr[slicep(C) = slicep(R(y))|L(X) =
v] ≤ 2−p + η. Thus, for every y, Pr[slicep(C) =
slicep(R(y))] ≤ 2−p + η, and the Lemma follows by a
union bound over the n2 seeds y ∈ {0, 1}2 log n.

4. USING THE CHALLENGE-RESPONSE GAME TO
CONSTRUCT AFFINE DISPERSERS

4.1. Roadmap
In the previous section we saw how to implement the

procedure CR(x, s) that can (in the sense explained above)
distinguish the case that H(Xs) = 0 from the case that
H(Xs) = k′ (where k′ is a parameter). To implement CR
we require an explicit construction of a function ch, and as
discussed above, a somewhere-extractor for affine sources
with entropy slightly smaller than k′ will do (as long as
the number of output rows ℓ is sufficiently smaller than
k′). Unfortunately, we do not know how to construct such
somewhere-extractors for affine sources with low entropy. In
our final construction we will have to use of weaker objects,
and this creates many complications. We can construct a
suitable somewhere-extractor for affine sources with entropy
k′ = n1−µ for some constant µ > 0, and this construction is
explained in Section 5. This in turn can be used to construct
dispersers for affine sources with entropy k = n1−ρ for
some constant ρ > 0. We will present this construction as a
warmup in the remainder of this section. This will allow us
to explain the ideas that are used in the final construction
in a modular way. In Section 6 we give an overview of the
ideas needed to achieve k <

√
n. The final construction and

analysis are given in the full version.

4.2. Nicely structured sources
We will use procedure CR to find good blocks in “nicely

structured sources” that we define next.

Definition 4.1 (blocks). A block s is a subset s ⊆ [n] defined
by s = {a, . . . , b}. We define left(s) = {1, . . . , a− 1}. For
t ∈ [n] we define sti = {(i− 1) · n/t+ 1, . . . , i · n/t}. When
t is clear from the context we omit it and use si or “block
i” to refer to sti.

Definition 4.2 (nicely structured source). Let n, k′ be pa-
rameters. An affine source X over {0, 1}n is nicely struc-
tured for block s with entropy k′ if H(Xleft(s)) = 0 and
H(Xs) ≥ k′. We say that X is strongly-nicely structured if
in addition H(X|Xs) ≥ k′.

In a nicely structured source all blocks j < i are empty
and block i contains entropy. In a strongly nicely structured
source, the pair (Xs, X) forms a 2-block affine block-wise
source with entropy threshold k. It is easy to see that:

Lemma 4.3 (Existence of nicely structured affine sub-
sources). For every n, k and 2 ≤ t < k, every affine source
X over {0, 1}n with H(X) ≥ k has an affine subsource
X(0) that is nicely structured for some block i∗ with entropy
k/4t. If furthermore, n/t ≤ k/2 then X(0) is also strongly
nicely structured for block i∗ with entropy k/4t.

Proof: For every i ∈ [t], let ki =
H(Xsi |Xs1 , . . . , Xsi−1). By the chain rule for
Shannon entropy, we have that

∑
i∈[t] ki ≥ k. Let

i∗ be the smallest i such that ki ≥ k/4t. It follows
that

∑
j<i∗ kj ≤ k/4. Let (v1, . . . , vi∗−1) be some

value in the support of (Xs1 , . . . , Xsi∗−1
) and set

X(0) = (X|Xs1 = v1, . . . , Xsi∗−1
= vi∗−1). Note that

X(0) is an affine subsource of X with deficiency k/4 which
is nicely structured for block i∗ and entropy k/4t. We also
have that H(X(0)) ≥ H(X) − k/4. If n/t ≤ k/2 then
H(X(0)|X(0)

si∗) ≥ k − k/4 − n/t ≥ k − k/4 − k/2 ≥ k/4
and X(0) is strongly nicely structured.

Note that the two requirements t < k and n/t ≤ k/2
(which together imply that X(0) is strongly nicely struc-
tured) also imply that k ≥ 2n/t > 2n/k which gives
k >

√
2n. This is necessary as for t < k <

√
n

there does not necessarily exist an affine subsource of X
that is strongly nicely structured, as blocks are of length
n/t > n/k >

√
n > k and so it may be that all blocks

except for one are empty.

4.3. Finding good blocks in nicely structured sources

Lemma 4.3 says that every affine source X has an affine
subsource that is nicely structured at some block i∗. Thus,
by Fact 1.4, in order to construct dispersers for general
affine sources, it suffices to construct dispersers for nicely
structured affine sources. If the entropy is sufficiently large,
it even suffices to construct dispersers for strongly nicely
structured affine sources.

We now observe that procedure CR can be used to
actually find a good block i∗ in a nicely structured source.
This is achieved by the following procedure.

Procedure FindBlock(x): We are given x ∈ {0, 1}n.
For every 1 ≤ i ≤ t, apply CR(x, si) (we will explain the
precise choice of parameters below) and let i′ be the minimal
i such that CR(x, si) passes.

Loosely speaking, the intuition is that every application
of CR on a block j < i∗ (that is empty) will fail, while the
application on block i∗ will pass. More formally, in Lemma
4.4 below, we show that every affine source X with H(X) ≥
k has an affine subsource X ′ which is nicely structured at
some block i∗ with entropy ≈ k/t, and that furthermore,
Pr[FindBlock(X ′) = i∗] ≥ 1− o(1).

This reduces the task of constructing dispersers for general
affine sources to constructing dispersers for nicely structured
sources in which we know the good block i∗ (and we will
consider this problem in the next section).

In order to implement this approach we need to supply
procedure CR with a somewhere-random extractor ch. In
the lemma below we work out the parameters needed for
implementing FindBlock. It turns out that with a sufficiently
good ch we can apply FindBlock even for sources of poly-
logarithmic entropy.

Lemma 4.4 (Correctness of FindBlock). There is a constant
α > 0 such that the following holds for every k ≥
polylog(n), t ≤ k1/3 and ch : {0, 1}n/t → {0, 1}ℓ×pmax

that is a somewhere extractor for affine sources with entropy
k/16t and error 2−pmax . Set p = pmax and assume that
ℓ, pmax ≤ kα and pmax ≥ 3 log n. For every affine source
X over {0, 1}n with H(X) ≥ k, there exists an affine
subsource X ′ that is nicely structured for some block i∗

with entropy k/8t and furthermore, Pr[FindBlock(X ′) =
i∗] ≥ 1 − 2−Ω(pmax). Moreover, if n/t ≤ k/2 then X ′ is
strongly nicely structured for block i∗

Proof: By Lemma 4.3 there exists an affine subsource
X(0) of X that is nicely structured for some block i∗ with
entropy k/4t (and strongly nicely structured if n/t ≤ k/2).
We choose the parameters kmin = k/8t and p = pmax in
all applications of CR and note that the requirements of
Construction 3.1 are met. We now iteratively go over all
j < i∗. For each j we apply Lemma 3.2 (2nd item) with
respect to source X(j−1) and block sj to obtain an affine
subsource X(j). To apply the Lemma we need to make
sure that H(X

(j−1)
sj) = 0 which happens for every affine

subsource of X(0). We also need to verify that H(X(j−1)) ≥
kmin. This holds initially for X(0) and we will maintain
the invariant that X(j) is a deficiency j · ℓ · pmax ≤ k/8t
deficiency affine subsource of X(0) which implies that
H(X

(j−1)
si∗) ≥ H(X

(0)
si∗)− j · ℓ ·pmax ≥ k/4t−k/8t = k/8t

and consequently H(X(j−1)) ≥ k/8t = kmin. We therefore
can apply Lemma 3.2 and conclude that there exists an affine
subsource X(j) of X(j−1) of deficiency ℓ · pmax such that
Pr[CRch,pmax

(X(j), sj) = ‘fail′] = 1.
Let X ′ = X(i∗−1). X ′ is a deficiency t · ℓ · pmax ≤ k/8t

subsource of X(0), and so we have that H(X ′
si∗

) ≥ k/4t−
k/8t ≥ k/8t and so it is indeed nicely structured for i∗ with
entropy k/8t. If X(0) is strongly nicely structured, we have
that H(X(0)|X(0)

si∗) ≥ k/4t and as X ′ is an affine subsource
with deficiency k/8t we have that H(X ′|X ′

si∗
) ≥ k/4t −

k/8t = k/8t. we know that CRch,pmax
(X ′, sj) fails with

probability one for j < i∗. Thus, we only need to show that
CRch,pmax

(X ′, si∗) passes with high probability in order to
establish that FindBlock identifies i∗ correctly. This follows
from Lemma 3.4 as we have set up the parameters of ch so
that ch(X ′

si∗
) is somewhere random with resiliency ℓ·pmax.

4.4. Dispersers for 2-block affine block-wise sources

By the previous discussion we can restrict our attention
to affine sources X that are nicely structured for a block i∗

that we know. Assume that we somehow achieve that the
input source X is in fact strongly nicely structured. Note
for example, that by Lemma 4.4 above this holds if say,
k ≥ n3/4, t = n1/3. Jumping ahead we mention that in our
final construction, we will be able to arrange things so that
we can assume w.l.o.g. that the source X we work with is
strongly nicely structured even for low k = no(1), and will
be able to apply the techniques below for low k.

Let s = si∗ and note that by definition (Xs, X) forms
a 2-block affine block-wise source with entropy threshold
kmin for some parameter kmin. Thus, we are left with the
task of designing dispersers for 2-block affine block-wise
sources with entropy threshold kmin.

It turns out that procedure CR is versatile beyond the
motivation explained in the previous sections. In fact, setting
Disps(x) = CR(x, s) produces a disperser in case (Xs, X)
is a 2-block affine block-wise source (by simply interpreting
pass/fail as zero/one).

We summarize the precise parameters in Lemma 4.5
below. We stress that when the entropy threshold of the
block-wise source is kmin = k/8t (as is the case after
applying FindBlock) the parameters with which we run CR
below are identical to those chosen in FindBlock and so if
we have a somewhere-extractor ch to apply in FindBlock
we can reuse it.

Lemma 4.5 (disperser for 2-block affine block-wise
sources). Let s ⊆ [n] be a subset of size n′. Let X be
an affine source over {0, 1}n so that (Xs, X) forms a 2-
block affine block-wise source with entropy threshold kmin.
Let ch : {0, 1}n′ → {0, 1}ℓ·pmax be a somewhere-random
extractor for affine sources with entropy kmin− ℓ · pmax for
ℓ·pmax ≤ kαmin for some constant α > 0 and assume that ch
has error ≤ 1/n3. For every 3 log n ≤ p ≤ pmax and every
v ∈ {‘pass′, ‘fail′}, Pr[CRch,p(X, s) = v] ≥ 2−ℓ·p > 0.

Proof: Let us analyze the output of CRch,p(X,Xs).
We have that block Xs has entropy, and this is exactly the
setup in which CR is supposed to pass. Consequently, by
Lemma 3.4, it follows that Pr[CRch,p(X, s) = ‘pass′] ≥
1−n2 ·(2−p+η) which is at least 1/2. We now observe that
by Lemma 3.2 (first item), the fact that H(X|Xs) ≥ kmin

implies that Pr[CRch,p(X, s) = ‘fail′] ≥ 2−ℓ·p > 0.

4.5. Putting things together: a basic disperser

Putting things together, we have the following construc-
tion of a “basic disperser” BasicD : {0, 1}n → {0, 1} for
affine sources which are strongly nicely structured at some
unknown block i∗.

Basic Disperser: Given input x ∈ {0, 1}n

• For every i ∈ [t] compute CRch,pmax
(x, si).

• Apply FindBlock: Namely, let i′ denote the smallest i
such that the CR passes.

• BasicD(x) = CRch,p(x, si′) where p ≤ pmax is a
parameter that we specify later.

There is a subtlety in making this approach go through. If
we use p = pmax in the application of CR in the third item,
then the two applications of CR on block Xsi′ are identical.
In order for BasicD to output ‘fail’ we need that the
first application outputs ‘pass’ and the second one outputs
‘fail’, but this is obviously impossible if the applications are
identical.

We overcome this problem by choosing a small confi-
dence parameter p < pmax. By Lemma 4.4, the probability
that the second item fails to identify the good index i∗ is
at most 2−Ω(pmax). On the other hand, the probability that
the third item outputs a given v ∈ {‘pass′, ‘fail′} is at
least 2−ℓp. Thus, taking p = o(pmax/ℓ) we have that with
positive (although small) probability, the block i∗ is selected,
and the procedure CR fails when applied with confidence
level p (and this holds as long as p ≥ 3 log n).

Warmup: A disperser for affine sources of entropy
k = n1−ρ for some ρ > 0: For sufficiently large k,
by Lemma 4.4 every affine source with H(X) ≥ k has
an affine subsource that is strongly nicely structured, and
on which BasicD outputs both pass and fail with positive
probability. By Fact 1.4 the procedure BasicD yields a
disperser for general affine sources (assuming we can con-
struct a somewhere-extractor ch with suitable parameters).
In the next section we construct a somewhere-extractor for
affine sources with entropy k1−µ for some constant µ > 0.
Plugging this somewhere-extractor into our machinery we
obtain a disperser for affine sources with entropy k ≥ n1−ρ

for some ρ > 0.4

5. SOMEWHERE EXTRACTORS VIA EXTRACTORS FOR
AFFINE BLOCK-WISE SOURCES

We need to construct somewhere-extractors for affine
sources in order to apply procedure CR. We will construct
somewhere-extractors (as well as weaker objects that still
suffice for applying CR) using extractors for affine block-
wise sources as a building block.

4We do not attempt to optimize ρ as this construction is only a warmup
for our main construction which achieves k = no(1). It is clear that the
approach we used cannot get ρ > 1/3. It seems plausible that one can
obtain ρ ≈ 1/4, but this will require a careful optimization of the constants
in some of the components that we use.

5.1. An extractor for O(log n
log k)-block affine block-wise source

Theorem 5.1 (extractor for affine block-wise sources).
There exists a constant a > 1 such that for every n and
k > (log n)a there is a polynomial time computable function
BE : {0, 1}b×n → {0, 1}kΩ(1)

that is an extractor for
b = O(log n

log k)-block affine block-wise sources with entropy

threshold k, and error 2−kΩ(1)

.

The full proof of Theorem 5.1 appears in the full version.
We now provide a brief sketch. Our proof relies on ideas
developed in [13], [14] and an extractor construction of
[14] that works for affine sources which are kΩ(1) × k
somewhere random. We are given a b-block affine block-
wise source X1, . . . , Xb for b = O(log n

log k). Our first step
is to transform X1 into a somewhere random source with
v = nO(1) rows. Each row is obtained by E(X1, y) where
y is one of the v seeds of a linear seeded strong (k, 1/4)-
extractor E with seed length O(log n) [19]. We divide the v
rows into v/kΩ(1) chunks where each chunk contains kΩ(1)

rows. We apply the extractor of [14] on each chunk, and as
one of the chunks is somewhere random we obtain a source
(close to) a somewhere random source with v/kΩ(1) rows
S1, . . . , Sv/kΩ(1) . We cannot apply the extractor of [14] on
S = (S1, . . . , Sv/kΩ(1)) as it is not affine. Instead, for every
1 ≤ i ≤ v/kΩ(1) we compute Wi = E(X2, Si) where E
is a linear seeded strong extractor. If we had that X1, X2

are independent then we would be guaranteed that Wi is
(close to) somewhere random. At this point, we would have
consumed source X1, and reduced the number of rows in the
somewhere random source by a factor of kΩ(1). Repeating
this process, we could consume b = O(logn

log k) sources and
reduce the number of rows from nO(1) to one.

While the sources X1, . . . , Xb are not necessarily inde-
pendent, we can use the fact that E is linear seeded to
argue that the analysis above can be extended to the case
that X1, . . . , Xb form an affine block-wise source. Loosely
speaking, this is because in an affine block-wise source
(X1, X2) with entropy threshold k, X2 can be represented
as a sum of two sources where one is a function of X1

and the other is independent of X1. Thus, applying a linear
seeded extractor E(X2, y) where y is a function of X1 can
be imagined to be operating on the independent part of X2

once the analysis fixes source X1.

5.2. Somewhere-extractors for affine sources

When we partition a source X into t blocks, we can hope
that the partition induces a block-wise source. In fact, we
will be happy even if the partition induces a block-wise
source with b < t blocks as we are shooting to construct
somewhere-extractors and therefore don’t mind trying all(
t
b

)
≤ tb possibilities. This motivates the following definition

and Lemma.

Definition 5.2 (hidden block-wise source). Let b ≤ k′ ≤

t ≤ n be parameters. An affine source X over {0, 1}n is
a t-partition b-block affine hidden block-wise source with
entropy threshold k′ if there exist i1 < . . . < ib ∈ [t] such
that Xsi1

, . . . , Xsib
form a b-block affine block-wise source

with entropy threshold k′. We omit the clause “t-partition”
if t is clear from the context.

Lemma 5.3. Let t ≤ k′ ≤ n be parameters. Let n′ = n/t

and b = O(logn′

log k′) be the number blocks used in Theorem

5.1 for BE : {0, 1}b×n′ → {0, 1}(k′)Ω(1)

. Consider the
function SR(x) = (BE(xsi1

, . . . , xsib
))i1<...<ib∈[t]. If X

is an affine source over {0, 1}n that is a b-block hidden
block-wise source with entropy threshold k′, then SR(X) is
tb × (k′)Ω(1), (2−(k′)Ω(1)

)-somewhere random.

Note that SR runs in polynomial time if tb = nO(1)

(which will always hold for our choices of parameters as we
will always have that b = O(log n/ log t)). By an argument
similar to that of Lemma 4.3, it is not hard to see that
any affine source with sufficiently large entropy is an affine
hidden block-wise source.

Lemma 5.4. Let t ≤ k ≤ n be integers such that k ≥ 2bn/t
for b = O(log n

log k) from Lemma 5.3. Every affine source X
with H(X) ≥ k is a b-block affine hidden block-wise source
with entropy threshold k′ = k/4t.

The function SR is the component that is missing in the
construction for affine dispersers for entropy n1−ρ given in
Section 4.5. In the corollary below we set up the parameters
for that application.

Corollary 5.5 (Somewhere-extractor for affine sources with
large entropy). For every sufficiently small constant α > 0
there is a constant µ > 0 and a polynomial time computable
function ch : {0, 1}n → {0, 1}nα/3×nα

that is a somewhere-
extractor for affine sources with entropy n1−µ, and has error
2−nα

.

6. HIGH LEVEL OVERVIEW OF OUR CONSTRUCTION FOR
k = no(1)

We now outline some of the ideas that will allow us to
extend our technique to k = no(1). We need to solve the
following two problems:

• The approach we developed can only work for k >
√
n.

This is (amongst other things) because affine sources
with entropy k <

√
n are not guaranteed to have affine

subsources which are strongly nicely structured.
• While the machinery we developed in Section 3 can

potentially work for k = no(1), we need to construct a
somewhere-extractor ch for affine sources with entropy
no(1) in order to apply CR in that parameter regime.

To explain our ideas, it is easier to first assume that
we already solved the second problem and can apply CR
to distinguish empty blocks from blocks with entropy rate
Ω(k/t). For simplicity of exposition, let us also cheat

and assume that CR distinguishes empty blocks from high
entropy blocks on the original source given to it (without
having to consider subsources). We have already seen that
informal arguments presented this way can be formalized by
carefully considering affine subsources.

Using a win-win analysis to search for strongly nicely
structured sources: We will solve the first problem using
a win-win analysis introduced in [15] (a similar high level
approach was also used in [2]). We pick t = kβ where β
is a very small constant (or even slightly sub-constant). We
show that any affine source over {0, 1}n with entropy k, has
a subsource X ′ that is either (i) strongly nicely structured
with entropy Ω(k/t), or (ii) nicely structured with entropy
threshold Ω(k). In the discussion below, we will once again
ignore subsources and assume that the subsource is the
original source. We already constructed dispersers for case
(i). In case (ii), for the good block i∗, affine source Xsi∗ is
of length n/t and has entropy Ω(k). This means that Xsi∗

has entropy rate that is Ω(t) times the rate of the original
source. As X is nicely structured, we can use FindBlock to
find block i∗ and we now hold a source with better entropy
guarantee than the one we started with. We continue this
analysis recursively, and at each step either we obtain a
strongly nicely structured source, or we multiply the rate
by Ω(t). If this process continues for O(log n/ log t) steps,
then we obtain an affine source of length n′ with entropy
k′ = (n′)1−o(1) for which we already constructed dispersers.

Distinguishing the two cases: A subtlety that we ig-
nored in the explanation above is that we need to know
which of the two cases happened in order to decide whether
to stop and produce an output on Xsi∗ (as in Section
4.4) or continue recursively on block Xsi∗ . We plan to
use CR to distinguish case (i) from case (ii). We apply
CR(X, si∗) with a lower confidence parameter p than any of
the confidence parameters that we previously used. We need
CR to distinguish the case that Ω(k/t) ≤ H(Xsi∗) ≪ k
from the case where H(Xsi∗) ≥ Ω(k). Note that in both
cases, the block Xs∗i

has relatively high entropy and so CR
passes with high probability in any of the two cases. Thus,
it is very likely that we decide to continue (which is what
we want in the second case). We use an argument that is
somewhat similar to that used in Section 4.4 in order to
argue that if we hold a strongly nicely structured source,
then for any Boolean value v, there is positive (although
small) probability that we stop at this point and output v.
Thus, we indeed handle both cases correctly.

Computing challenges recursively: In the outline above
we assumed that we already constructed a function ch that
is a somewhere extractor for affine sources of entropy no(1)

with which we can implement CR. We will construct this
function ch using once again, a win-win analysis. We remark
that we would stop here and the construction and analysis
would be much simpler, if we could construct somewhere
extractors for affine sources of low entropy.

We show that every affine source X with entropy k, has
an affine subsource that is either, (i) a b-block affine hidden
block-wise source with entropy Ω(k/t), or, (ii) a nicely
structured source with entropy threshold Ω(k/b) ≫ k/t.
In the first case, we can produce a somewhere random
matrix by considering all tb candidate block-wise sources
and applying our extractor BE (in a similar way to what is
done in Lemma 5.3). In the second case, we can identify the
good block using CR and apply ch recursively on a block
with significantly higher entropy rate.

This argument may seem circular at first, as we use CR to
implement ch and vice-versa. It is important to notice that
we apply CR for testing blocks for higher entropy rate than
the one we want ch to handle (and this enables us to use
recursion). Unlike the previous argument, we do not need to
distinguish the two cases (which is crucial as this would give
a circular argument if we tried to distinguish the two cases).
More precisely, as we are allowed to output a somewhere
random source, we simply append the rows of the matrix
obtained by the block si∗ that we are considering and the
rows of the matrix associated with its chosen sub-block. We
know that one of these two matrices is somewhere random
and therefore we obtain a somewhere random matrix.

Extending the argument to the real setup with sub-
sources: There are subtleties in implementing this recursion
when we extend the argument to the true scenario and
need to handle subsources. The problem is that we obtain a
function ch that is only guaranteed to output a somewhere
random distribution on a subsource of the original source
that we work with. While this is always good enough when
constructing dispersers, it is problematic when constructing
extractors (and we want ch to be a somewhere extractor).

To handle this problem, we carefully choose properties of
ch that we can maintain recursively, and argue that these
properties suffice for applying CR as we go along. We need
to be careful in the order in which the analysis goes down
to subsources (and this leads to the resiliency property of
ch with which Lemma 3.4 is stated).

A little bit more precisely, when given a source X
we can first consider an affine subsource X(0) in which
the previously described recursion tree, has a node that is
strongly nicely structured, and a descendent that is a hidden
block-wise source. We can then consider an affine subsource
X ′ of X(0) on which CR fails on all blocks to the left of the
blocks that we visit on the way, so that we have a chance
to reach the two interesting nodes. This is not a problem,
as Lemma 3.2 does not require anything from ch. We now
want to apply Lemma 3.4 on the path leading to the two
interesting nodes, so that we end up finding the two nodes.
The resiliency property stated in Lemma 3.4 can be seen to
take care of this problem if we let the resiliency parameter
grow with the length of the path.

7. CONCLUSION

We give an explicit construction of dispersers for affine
sources with entropy k = 2log

0.9 n = no(1). Interesting open
problems are:

• Improve the entropy threshold k to say polylog(n).
• Increase the number of extracted bits. We remark that

by the technique of Gabizon and Shaltiel [9] improving
the number of extracted bits to m = 2 log n will
automatically give an improvement to m = Ω(k).

• Our construction would be significantly simpler if one
can explicitly construct a somewhere extractor for affine
sources with a small number of output rows. More
specifically, to get a final result for entropy k we will
require a somewhere extractor for entropy ≈ k that has
a number of output rows which is significantly smaller
than k, (say ko(1)).

• Finally, our methods yield dispersers rather than ex-
tractors. It is open to explicitly construct extractors for
affine sources with entropy k = no(1).

ACKNOWLEDGMENT

I thank Ariel Gabizon and Raghu Meka for inspiring
discussions. I am grateful to anonymous referees for many
detailed comments and suggestions.

REFERENCES

[1] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigder-
son, “Simulating independence: New constructions of con-
densers, ramsey graphs, dispersers, and extractors,” J. ACM,
vol. 57, no. 4, 2010.

[2] B. Barak, A. Rao, R. Shaltiel, and A. Wigderson, “2-source
dispersers for sub-polynomial entropy and ramsey graphs
beating the frankl-wilson construction,” in STOC, 2006, pp.
671–680.

[3] E. Ben-Sasson and S. Kopparty, “Affine dispersers from
subspace polynomials,” in STOC, 2009, pp. 65–74.

[4] E. Ben-Sasson and N. Zewi, “From affine to two-source
extractors via approximate duality,” in STOC, 2011.

[5] J. Bourgain, “On the construction of affine extractors,” Ge-
ometric And Functional Analysis, vol. 17, no. 1, pp. 33–57,
2007.

[6] E. Demenkov and A. Kulikov, “An elementary proof of
3n − o(n) lower bound on the circuit complexity of affine
dispersers,” Electronic Colloquium on Computational Com-
plexity, Tech. Rep., 2011.

[7] M. DeVos and A. Gabizon, “Simple affine extractors using
dimension expansion,” in IEEE Conference on Computational
Complexity, 2010, pp. 50–57.

[8] A. Gabizon and R. Raz, “Deterministic extractors for affine
sources over large fields,” Combinatorica, vol. 28, no. 4, pp.
415–440, 2008.

[9] A. Gabizon and R. Shaltiel, “Increasing the output length of
zero-error dispersers,” in APPROX-RANDOM, 2008, pp. 430–
443.

[10] X. Li, “Improved constructions of three source extractors,” in
IEEE Conference on Computational Complexity, 2011.

[11] ——, “A new approach to affine extractors and dispersers,”
in IEEE Conference on Computational Complexity, 2011.

[12] N. Nisan, “Extracting randomness: How and why a survey,”
in IEEE Conference on Computational Complexity, 1996, pp.
44–58.

[13] A. Rao, “Extractors for a constant number of polynomially
small min-entropy independent sources,” SIAM J. Comput.,
vol. 39, no. 1, pp. 168–194, 2009.

[14] ——, “Extractors for low-weight affine sources,” in IEEE
Conference on Computational Complexity, 2009, pp. 95–101.

[15] O. Reingold, R. Shaltiel, and A. Wigderson, “Extracting
randomness via repeated condensing,” SIAM J. Comput.,
vol. 35, no. 5, pp. 1185–1209, 2006.

[16] R. Shaltiel, “Recent developments in explicit constructions of
extractors,” Bulletin of the EATCS, vol. 77, pp. 67–95, 2002.

[17] ——, “How to get more mileage from randomness extrac-
tors,” Random Struct. Algorithms, vol. 33, no. 2, pp. 157–186,
2008.

[18] ——, “An introduction to randomness extractors,” in ICALP
(2), 2011, pp. 21–41.

[19] R. Shaltiel and C. Umans, “Simple extractors for all min-
entropies and a new pseudorandom generator,” J. ACM,
vol. 52, no. 2, pp. 172–216, 2005.

[20] S. Vadhan, “Randomness extractors and their many guises,”
in FOCS, 2002, pp. 9–12.

[21] S. P. Vadhan, “The unified theory of pseudorandomness,”
SIGACT News, vol. 38, no. 3, pp. 39–54, 2007.

[22] A. Yehudayoff, “Affine extractors over prime fields,”
Manuscript, 2010.

