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Abstract. The area of derandomization attempts to provide efficient
deterministic simulations of randomized algorithms in various algorith-
mic settings. Goldreich and Wigderson introduced a notion of “typically-
correct” deterministic simulations, which are allowed to err on few inputs.
In this paper we further the study of typically-correct derandomization
in two ways.
First, we develop a generic approach for constructing typically-correct
derandomizations based on seed-extending pseudorandom generators,
which are pseudorandom generators that reveal their seed. We use our
approach to obtain both conditional and unconditional typically-correct
derandomization results in various algorithmic settings. We show that
our technique strictly generalizes an earlier approach by Shaltiel based
on randomness extractors, and simplifies the proofs of some known re-
sults. We also demonstrate that our approach is applicable in algorith-
mic settings where earlier work did not apply. For example, we present a
typically-correct polynomial-time simulation for every language in BPP
based on a hardness assumption that is weaker than the ones used in
earlier work.
Second, we investigate whether typically-correct derandomization of BPP
implies circuit lower bounds. Extending the work of Kabanets and Im-
pagliazzo for the zero-error case, we establish a positive answer for error
rates in the range considered by Goldreich and Wigderson. In doing so,
we provide a simpler proof of the zero-error result. Our proof scales bet-
ter than the original one and does not rely on the result by Impagliazzo,
Kabanets, and Wigderson that NEXP having polynomial-size circuits
implies that NEXP coincides with EXP.

1 Introduction

Randomized Algorithms and Derandomization One of the central topics in the
theory of computing deals with the power of randomness – can randomized proce-
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dures be efficiently simulated by deterministic ones? In some settings exponential
gaps have been established between randomized and deterministic complexity;
in some settings efficient derandomizations3 are known; in others the question
remains wide open. The most famous open setting is that of time-bounded com-
putations, i.e., whether BPP=P, or more modestly, whether BPP lies in de-
terministic subexponential time. A long line of research gives “hardness versus
randomness tradeoffs” for this problem (see [12] for an introduction). These are
conditional results that give derandomizations assuming a hardness assumption
(typically circuit lower bounds of some kind), where the efficiency of the deran-
domization depends on the strength of the hardness assumption. The latter is
used to construct an efficient pseudorandom generator, which is a determinis-
tic procedure G that stretches a short “seed” s into a longer “pseudorandom
string” G(s) with the property that the uniform distribution on pseudorandom
strings is computationally indistinguishable from the uniform distribution on all
strings. G allows us to derandomize a randomized procedure A(x, r) that takes
an input x and a string r of “coin tosses” as follows: We run the pseudorandom
generator on all seeds to produce all pseudorandom strings of length |r|; for each
such pseudorandom string we run A using that pseudorandom string as “coin
tosses”, and output the majority vote of the answers of A. Note that this deran-
domization procedure takes time that is exponential in the seed length of the
pseudorandom generator. For example, efficient pseudorandom generators with
logarithmic seed length imply that BPP=P, whereas subpolynomial seed length
only yields simulations of BPP in deterministic subexponential time.

Typically-Correct Derandomization Weaker notions of derandomization have
been studied, in which the deterministic simulation is allowed to err on some
inputs. Impagliazzo and Wigderson were the first to consider derandomizations
that succeed with high probability on any efficiently samplable distribution; re-
lated notions have subsequently been investigated in [8, 20, 4, 17]. Goldreich
and Wigderson [3] introduced a weaker notion in which the deterministic sim-
ulation only needs to behave correctly on most inputs of any given length. We
refer to such simulations as “typically-correct derandomizations”. The hope is
to construct typically-correct derandomizations that are more efficient than the
best-known everywhere-correct derandomizations, or to construct them under
weaker assumptions than the hypotheses needed for everywhere-correct deran-
domization.

Previous Work on Typically-Correct Derandomization Goldreich and Wigderson
[3] had the key idea to obtain typically-correct derandomizations by “extracting
randomness from the input”: extract r = E(x) in a deterministic way such that
B(x) = A(x,E(x)) behaves correctly on most inputs. If this approach works
(as such) and E is efficient, the resulting typically-correct derandomization B

3 In this paper the term “derandomization” always refers to “full derandomization”,
i.e., obtaining equivalent deterministic procedures that do not involve randomness
at all.
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has essentially the same complexity as the original randomized procedure A. In
principle, the approach is limited to algorithms A that use no more than |x| ran-
dom bits; by combining it with pseudorandom generators one can try to handle
algorithms that use a larger number of random bits. Goldreich and Wigderson
managed to get the approach to work unconditionally for logspace algorithms for
undirected connectivity, a problem which has been fully derandomized by now
[15]. Under a hardness assumption that is not known to imply BPP=P, namely
that there are functions that are mildly hard on average for small circuits with
access to an oracle for satisfiability, they showed that BPP has polynomial-time
typically-correct derandomizations that err on very few inputs, namely at most
a subexponential number. Their construction uses Trevisan’s extractor [19].

Zimand [24] showed unconditional typically-correct derandomizations with
polynomial overhead for sublinear-time algorithms, which can be viewed as ran-
domized decision trees that use a sublinear number of random bits. Zimand’s
approach relies on a notion of randomness extractors called “exposure-resilient
extractors” introduced in [23].

Shaltiel [16] described a generic approach to obtain typically-correct deran-
domization results. Loosely speaking he showed how to construct a typically-
correct derandomization for any randomized procedure that uses a sublinear
amount of randomness when given an extractor with exponentially small error
that extracts randomness from distributions that are “recognizable by the proce-
dure.” We elaborate on Shaltiel’s approach in Section 4. Using this approach and
“off the shelf” randomness extractors, Shaltiel managed to reproduce Zimand’s
result for decision trees as well as realize unconditional typically-correct deran-
domizations for 2-party communication protocols and streaming algorithms.

Shaltiel also combined his approach with pseudorandom generator construc-
tions to handle procedures that require a polynomial number of random bits.
He obtained typically-correct derandomizations with a polynomially small error
rate for randomized algorithms computable by polynomial-sized constant-depth
circuits, based on the known hardness of parity for such circuits. He also derived
a conditional typically-correct derandomization result for BPP under a hardness
hypothesis that is incomparable to the Goldreich-Wigderson hypothesis (and is
also not known to imply BPP=P), namely that there are functions that are very
hard on average for small circuits without access to an oracle for satisfiability.
The resulting error rate is exponentially small. For both results Shaltiel applies
the pseudorandom generators that follow from the hardness versus randomness
tradeoffs twice: once to reduce the need for random bits to sublinear, and once
to construct the required randomness extractor with exponentially small error.
Whereas the first pseudorandom generator application can do with functions
that are mildly hard on average, the second one requires functions that are very
hard on average.

Our Approach In this paper we develop an alternative generic approach for
constructing typically-correct derandomizations. The approach builds on “seed-
extending pseudorandom generators” rather than “extractors”. A seed-extending
pseudorandom generator is a generator G which outputs the seed as part of the
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pseudorandom string, i.e., G(s) = (s,E(s)) for some function E. 4 The well-
known Nisan-Wigderson pseudorandom generator construction [14] can easily be
made seed-extending. We show that whenever a seed-extending pseudorandom
generator passes certain statistical tests defined by the randomized procedure
A(x, r), the deterministic procedure B(x) = A(x,E(x)) forms a typically-correct
derandomization of A, where the error rate depends on the error probability
of the original randomized algorithm and on the error of the pseudorandom
generator.

Note that this approach differs from the typical use of pseudorandom gener-
ators in derandomization, where the pseudorandom generator G is run on every
seed. As the latter induces a time overhead that is exponential in the seed length,
one aims for pseudorandom generators that are computable in time exponential
in the seed length. A polynomial-time simulation is achieved only in the case
of logarithmic seed lengths. In contrast, we run G only once, namely with the
input x of the randomized algorithm as the seed. We use the pseudorandom
generator to select one “coin toss sequence” r = E(x) on which we run the
randomized algorithm. As opposed to the traditional derandomization setting,
our approach benefits from pseudorandom generators that are computable in
time less than exponential in the seed length. With a pseudorandom genera-
tor computable in time polynomial in the output length, we obtain nontrivial
polynomial-time typically-correct derandomizations even when the seed length
is just subpolynomial.

Our approach has the advantage of being more direct than the one of [16], in
the sense that it derandomizes the algorithm A in “one shot”. More importantly,
it obviates the second use of pseudorandom generators in Shaltiel’s approach and
allows us to start from the weaker assumption that there are functions which
are mildly hard on average for small circuits without access to an oracle for
satisfiability.

While our assumption is weaker than both the one in [3] and the one in [16],
the error rate of our typically-correct derandomizations is only polynomially
small. We can decrease the error rate by strengthening the hardness assump-
tion. Under the same hardness assumption as [16] our approach matches the
exponentially small error rate in that paper.

We can similarly relax the hardness assumption in a host of other settings.
In some cases this allows us to establish new unconditional typically-correct
derandomizations, namely for models where functions that are very hard on
average are not known but functions which are only mildly hard on average are
known unconditionally.

We also determine the precise relationship between our approach and Shaltiel’s.
We show that in the range of exponentially small error rates, “extractors for
recognizable distributions” are equivalent to seed-extending pseudorandom gen-

4 Borrowing from the similar notion of “strong extractors” in the extractor literature,
such pseudorandom functions have been termed “strong” in earlier papers. In coding-
theoretic terms, they could also be called “systematic”. However, we find the term
“seed-extending” more informative.
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erators that pass the statistical tests we need. This means that all the aforemen-
tioned results of [16] can also be obtained using our new approach. Since we can
also handle situations where [16] does not apply, our approach is more generic.

Typically-Correct Derandomization and Circuit Lower Bounds Kabanets and
Impagliazzo [9] showed that subexponential-time derandomizations of BPP im-
ply circuit lower bounds that seem beyond the scope of current techniques. We
ask whether subexponential-time typically-correct derandomizations imply such
lower bounds. A main contribution of our paper is an affirmative answer in the
case of the error rates considered by Goldreich and Wigderson. The case of higher
error rates remains open.

Our result is a strengthening of [9] from the everywhere-correct setting to
the typically-correct setting. In developing it, we also obtain a simpler proof for
the everywhere-correct setting. Our proof scales better than the one in [9], yields
the same lower bound for a smaller class, and does not rely on the result from [6]
that NEXP having polynomial-size circuits implies that NEXP coincides with
EXP.

Organization We start Section 2 with the formal definitions of the notions used
throughout the rest of the paper, and the key lemma that shows how seed-
extending pseudorandom generators yield typically-correct derandomizations. In
Section 3 we state and discuss both the conditional and unconditional results we
obtain by applying our approach using the Nisan-Wigderson pseudorandom gen-
erator construction. In Section 4 we give a detailed comparison of our approach
with Shaltiel’s extractor-based approach. In Section 5 we describe our results on
circuit lower bounds that follow from typically-correct and everywhere-correct
derandomization of BPP. Due to space limitations all formal proofs are deferred
to the full version of this paper.

2 Typically-Correct Derandomization and the PRG
Approach

Notation and Concepts We use the following terminology throughout the pa-
per. We view a randomized algorithm as defined by a deterministic algorithm
A(x, r) where x denotes the input and r the string of “coin tosses”. We typically
restrict our attention to one input length n, in which case A becomes a function
A : {0, 1}n × {0, 1}m → {0, 1} where m represents the number of random bits
that A uses on inputs of length n. We say that A : {0, 1}n × {0, 1}m → {0, 1}
computes a function L : {0, 1}n → {0, 1} with error ρ if for every x ∈ {0, 1}n,
PrR←Um

[A(x,R) 6= L(x]] ≤ ρ, where Um denotes the uniform distribution over
{0, 1}m. We say that the randomized algorithm A computes a language L with
error ρ(·), if for every input length n, the function A computes the function L
with error ρ(n).

Given a randomized algorithm A for L, our goal is to construct a deterministic
algorithm B of complexity comparable to A that is typically correct for L. By



6 Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel

the latter we mean that B and L agree on most inputs of any given length, or
equivalently, that the relative Hamming distance between B and L at any given
length is small.

Definition 1 (typically-correct behavior). Let L : {0, 1}n → {0, 1} be a
function. We say that a function B : {0, 1}n → {0, 1} is within distance δ of
L if PrX←Un [B(X) 6= L(X)] ≤ δ. We say that an algorithm B computes a
language L to within δ(·) if for every input length n, the function B is within
distance δ(n) of the function L.

In general, a function G : {0, 1}n → {0, 1}` is ε-pseudorandom for a test
T : {0, 1}` → {0, 1} if |PrS←Un [T (G(S)) = 1] − PrR←U`

[T (R) = 1]| ≤ ε. In
this paper we are dealing with tests T (x, r) that receive two inputs, namely x of
length n and r of length m, and with corresponding pseudorandom functions G
of the form G(x) = (x,E(x)), where x is of length n and E(x) of length m. We
call such functions “seed-extending”.

Definition 2 (seed-extending function). A function G : {0, 1}n → {0, 1}n+m

is seed-extending if it is of the form G(x) = (x,E(x)) for some function E :
{0, 1}n → {0, 1}m. We refer to the function E as the extending part of G.

Note that a seed-extending function G with extending part E is ε-pseudorandom
for a test T : {0, 1}n × {0, 1}m → {0, 1} if

| Pr
X←Un,R←Um

[T (X, R) = 1]− Pr
X←Un

[T (X, E(X)) = 1]| ≤ ε.

A seed-extending ε(·)-pseudorandom generator for a family of tests T is a deter-
ministic algorithm G such that for every input length n, G is a seed-extending
ε(n)-pseudorandom function for the tests in T corresponding to input length n.

The Seed-Extending Pseudorandom Generator Approach Our key observation is
that good seed-extending pseudorandom generators G for certain simple tests
based on the algorithm A yield good typically-correct derandomizations of the
form B(x) = A(x,E(x)). The following lemma states the quantitative relation-
ship.

Lemma 1. Let A : {0, 1}n × {0, 1}m → {0, 1} and L : {0, 1}n → {0, 1} be
functions such that

Pr
X←Un,R←Um

[A(X, R) 6= L(X)] ≤ ρ. (1)

Let G : {0, 1}n → {0, 1}n+m be a seed-extending function with extending part E,
and let B(x) = A(x,E(x)).

1. If G is ε-pseudorandom for tests of the form T (x, r) = A(x, r)⊕ L(x), then
B is within distance ρ + ε of L

2. If G is ε-pseudorandom for tests of the form Tr′(x, r) = A(x, r) ⊕ A(x, r′)
where r′ ∈ {0, 1}m is an arbitrary string, then B is within distance 3ρ + ε of
L.
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Note that if A computes L with error ρ then condition (1) of the lemma is
met. The two parts of the lemma differ in the complexity of the tests and in the
error bound. The complexity of the tests plays a critical role for the existence
of pseudorandom generators. In the first item the tests use the language L as
an oracle, which may result in too high a complexity. In the second item we
reduce the complexity of the tests at the cost of introducing non-uniformity and
increasing the error bound. The increase in the error bound is often not an issue
as we can easily reduce ρ by slightly amplifying the original algorithm A before
applying the lemma.

The Nisan-Wigderson Construction Some of the constructions of pseudorandom
generators in the literature are seed-extending or can be easily modified to be-
come seed-extending. One such example is the Nisan-Wigderson construction
[14], which builds a pseudorandom generator for a given class of randomized
algorithms out of a language that is hard on average for a related class of algo-
rithms. We use the following terminology for the latter.

Definition 3 (hardness on average). A language L is δ(·)-hard for a class
of algorithms A if no A ∈ A is within distance δ(n) of L for almost all input
lengths n.

We use the Nisan-Wigderson construction for all our results in the next sec-
tion. Some of the results are conditioned on reasonable but unproven hypotheses
regarding the existence of languages that are hard on average. Others are uncon-
ditional because languages of the required hardness have been proven to exist.

3 Applications

3.1 Conditional Results

The first setting we consider is that of BPP. We use a modest hardness assump-
tion to show that any language in BPP has a polynomial-time deterministic
algorithm that errs on a polynomially small fraction of the inputs.

Theorem 1. Let L be a language in BPP that is computed by a randomized
bounded-error polynomial-time algorithm A. For any positive constant c, there
is a positive constant d depending on c and the running time of A such that the
following holds. If there is a language H in P that is 1

nc -hard for circuits of size
nd, then there is a deterministic polynomial-time algorithm B that computes L
to within 1

nc .

Comparison to Previous Work We now compare Theorem 1 to previous con-
ditional derandomization results for BPP. We first consider everywhere-correct
results. Plugging our assumption into the hardness versus randomness tradeoffs
of [14] gives the incomparable result that BPP is in deterministic subexponential
time, i.e., in time 2nε

for every positive constant ε. We remark that to obtain
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this result one can relax the assumption and allow the language H to be in
deterministic linear-exponential time, i.e., E=DTIME(2O(n)).

We next compare Theorem 1 to previous conditional results on typically-
correct derandomization of BPP [3, 16]. The assumption that we use is weaker
than the assumptions that are used by previous work. More specifically, [3] needs
H to be 1

nc -hard for circuits of size nd with a SAT oracle, and [16] requires that
H be ( 1

2 −
1

2nΩ(1) )-hard for circuits of size nd.
Thus, the two aforementioned results do not yield any typically-correct deran-

domization when starting from the modest assumption that we use. Under their
respective stronger assumptions, the other approaches do yield typically-correct
algorithms that are closer to L. We remark that we can match the distance in
[16] if we are allowed to assume the same hardness hypothesis.

Extensions to Other Algorithmic Settings [11] observed that the proof of the
Nisan-Wigderson generator [14] relativizes and used this fact to give hardness
versus randomness tradeoff results in a number of different algorithmic settings.
This approach also works within our typically-correct derandomization frame-
work.

Some consequences are listed in the table below for the classes AM, BP.⊕P
and BP.L, where the latter refers to randomized algorithms that run in loga-
rithmic space and are allowed two-way access to their random coins [13]. We
could also state similar results for the other settings considered by [11]. For each
of these complexity classes we need to assume a different hardness assumption,
where the difference lies in the type of circuits and in the uniform class to con-
sider. We remark that for BP.⊕P we only need a worst-case hardness assumption
as in this setting worst-case hardness is known to imply average-case hardness
[2].

Setting Hardness Assumption Conclusion
AM=BP.NP NP ∩ coNP 1

nc -hard for SIZESAT(nd) AM within 1
nc of NP

BP.⊕P ⊕P * SIZE⊕SAT(nd) BP.⊕P within 1
nc of ⊕P

BP.L L 1
nc -hard for BP-SIZE(nd) BP.L within 1

nc of L

In the table, SIZE(s) refers to Boolean circuits of size s, SIZEO(·) refers to
Boolean circuits that have access to oracle gates for the language O, and BP-
SIZE(s) refers to branching programs of size s. A class of languages is δ(·)-hard
for A if it contains a language that is δ(·)-hard for A.

3.2 Unconditional Results

Constant Depth Circuits Our techniques imply typically-correct derandomiza-
tion results for randomized constant-depth polynomial-size circuits. This result
uses the fact that the parity function is ( 1

2−
1

2nΩ(1) )-hard on average for constant-
depth circuits [5] and gives an alternative and simpler proof of a result of [16]
in this setting.
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Constant Depth Circuits with Few Symmetric Gates In contrast to the approach
of [16], our techniques also yield results in settings where the best-known lower
bounds only yield moderate hardness on average. One such model is that of
constant-depth circuits that are allowed a small number of arbitrary symmetric
gates, i.e., gates that compute functions which only depend on the Hamming
weight of the input, such as parity and majority. In this setting Viola [21]
constructed a function that is ( 1

2 −
1

nΩ(log n) )-hard on average. Via the Nisan-
Wigderson construction, this in turn translates into a pseudorandom generator
with stretch that is quasi-polynomial and error that is polynomially small in the
output length, resulting in an error rate that is only quasipolynomially small.
Thus, the approach of [16] does not apply, but ours can exploit these weak
pseudorandom generators and gives the following result for both log-space and
polynomial-time uniformity.

Theorem 2. Let L be a language and A a uniform randomized bounded-error
circuit of constant depth and polynomial size that uses o(log2 n) symmetric gates
such that A computes L with error at most ρ. Then there is a uniform determin-
istic circuit B of constant depth and polynomial size that uses exactly the same
symmetric gates as A in addition to a polynomial number of parity gates such
that B computes L to within 3ρ + 1

nΩ(log n) .

Multi-Party Communication Complexity [16] proves a typically-correct deran-
domization result for two-party communication protocols. The proof of [16] is
tailored to the two-party case and does not extend to the general case of k-
party communication in which the players have the inputs on their foreheads
[1]. Using our approach we can handle k > 2 and show that every uniform ran-
domized k-party communication protocol has a uniform deterministic k-party
communication protocol of comparable communication complexity that is typ-
ically correct. The following statement holds for both log-space and poly-time
uniformity, where we call a communication protocol uniform if whenever a player
sends a message, that message can be efficiently computed as a function of the
player’s view.

Theorem 3. Let L be a language and A a uniform randomized communication
protocol that computes L with error at most ρ and uses k players, q bits of
communication, and m bits of public randomness, with k, q, m, and log(1/ε)
functions computable within the uniformity bounds. Then there is a uniform
deterministic communication protocol B that computes L to within 3ρ + ε and
uses k players and O(2k ·m · (q + log(m/ε))) bits of communication.

For k = 2, Theorem 3 yields a weaker result than that of [16] – which gives
a deterministic protocol with communication complexity O(q + m) rather than
O(q ·m) – although we can also obtain the stronger result using our approach,
as explained in the next section.
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4 Comparison with the Extractor-Based Approach

We have seen several settings in which seed-extending pseudorandom generators
allow us to prove typically-correct derandomization results that do not follow
from the extractor-based approach of [16]. We now show that the approach of
[16] is essentially equivalent to having seed-extending pseudorandom generators
with exponentially small error. This reaffirms our claim that our approach is
more general since we additionally obtain meaningful results using pseudoran-
dom generators with larger error.

Overview of the Extractor-Based Approach [16] uses a notion of “extractors for
recognizable distributions” explained below. For every function f : {0, 1}n →
{0, 1} one can associate the distribution Uf that is recognized by f , which is the
uniform distribution over f−1(1) = {x : f(x) = 1}. A function E : {0, 1}n →
{0, 1}m is a (k, ε)-extractor for distributions recognizable by some collection of
functions f : {0, 1}n → {0, 1}, if for every such function f with |f−1(1)| ≥
2k, the distribution E(Uf ) has statistical distance at most ε from the uniform
distribution on m bit strings.

[16] shows the following general approach towards typically-correct deran-
domization. Let A : {0, 1}n × {0, 1}m → {0, 1} be a randomized algorithm
that computes some function L with error ρ. Let ∆ = 100m and let E be
an (n−∆, 2−∆)-extractor for distributions recognizable by functions of the form
fr1,r2(x) = A(x, r1)⊕A(x, r2) where r1, r2 ∈ {0, 1}m are arbitrary strings. Then
setting B(x) = A(x,E(x)) gives an algorithm that is within 3ρ + 2−10m of L.

Comparison The above approach requires extractors with error that is exponen-
tially small in m, and breaks down completely when the error is larger. We now
observe that an extractor with exponentially small error yields a seed-extending
pseudorandom generator with exponentially small error. It follows that the ex-
tractors used in [16] can be viewed as seed-extending pseudorandom generators
with exponentially small error.

Theorem 4. Let T : {0, 1}n × {0, 1}m → {0, 1} be a function. Let ∆ = m +
log(1/ε) + 1 and let E : {0, 1}n → {0, 1}m be an (n − ∆, 2−∆)-extractor for
distributions recognizable by functions of the form fr(x) = T (x, r) where r ∈
{0, 1}m is an arbitrary string. Then, G(x) = (x,E(x)) is ε-pseudorandom for T .

We remark that in some algorithmic settings, namely decision trees and 2-
party communication protocols, the approach of [16] yields typically-correct de-
randomizations that are more efficient than the ones that follow from applying
our methodology directly based on known hardness results. Nevertheless, by
Theorem 4 the extractors used in [16] give rise to seed-extending pseudorandom
generators that yield typically-correct derandomizations matching the efficiency
of the extractor-based approach.

We also observe that seed-extending pseudorandom generators with error
that is exponentially small in m yield extractors for recognizable distributions.
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Thus, the approach of [16] is essentially equivalent to the special case of seed-
extending pseudorandom generators with error that is exponentially small.

Theorem 5. Let f : {0, 1}n → {0, 1} be a function and let E : {0, 1}n →
{0, 1}m be a function such that G(x) = (x,E(x)) is seed-extending ε-pseudorandom
for test T (x, r) of the form Tz(x, r) = f(x) ∧ (r = z) where z ∈ {0, 1}m is an
arbitrary string. Assume that ε < 2−3m and let ∆ = (log(1/ε)−m)/2 > m. Then
E is an (n−∆, 2−∆)-extractor for the distribution recognizable by f .

Note that seed-extending pseudorandom generators with error ε < 2−m must
have m < n (as there are only 2n seeds). This is why the approach of [16] cannot
directly handle randomized algorithms with a superlinear number of random
bits. In contrast, in Theorems 1 and 2 we are able to directly handle algorithms
with a superlinear number of random bits using pseudorandom generators with
larger error.

5 Circuit Lower Bounds

From everywhere-correct derandomization It is well-known that the existence of
pseudorandom generators for polynomial-size circuits (which yields everywhere-
correct derandomization of BPP) implies that EXP does not have polynomial-
size circuits; this is the easy direction of the hardness versus randomness trade-
offs. Impagliazzo et al. [6] showed that everywhere-correct derandomization of
promise-BPP into NSUBEXP implies that NEXP does not have polynomial-size
circuits. Building on [6], Kabanets and Impagliazzo [9] showed that everywhere-
correct derandomization of BPP into NSUBEXP implies that NEXP does not
have Boolean circuits of polynomial size or that the permanent over Z does not
have arithmetic circuits of polynomial size. As a byproduct of our investigations,
we obtain a simpler proof of the latter result.

We use the following terminology for the statements of our lower bound re-
sults. We consider arithmetic circuits with internal nodes representing addition,
subtraction, and multiplication, and leaves representing variables and the con-
stants 0 and 1. ACZ denotes the language of all arithmetic circuits that compute
the zero polynomial over Z. Perm denotes the permanent of matrices over Z, and
0-1-Perm its restriction to matrices with all entries in {0, 1}. We measure the
size of circuits by the string length of their description, and assume that the de-
scription mechanism is such that the description of a circuit of size s can easily
be padded into the description of an equivalent circuit of size s′ for any s′ > s.

Our approach yields the following general statement regarding everywhere-
correct derandomization of the specific BPP-language ACZ.

Theorem 6. Let a(n), s(n), and t(n) be functions such that a(n) and s(n) are
constructible, a(n) and t(n) are monotone, and s(n) ≥ n. The following holds
as long as for every constant c and sufficiently large n,

t ((s(n))c · a((s(n)c))) ≤ 2n.
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If ACZ ∈ NTIME(t(n)) then (i) NTIME(2n) ∩ coNTIME(2n) does not have
Boolean circuits of size s(n), or (ii) Perm does not have arithmetic circuits of
size a(n).

We point out that part (i) states a lower bound for NEXP ∩ coNEXP rather than
just for NEXP, and Theorem 6 does so for the entire range of the parameters; the
proof in [9] only gives such a lower bound in the case where all the parameters are
polynomially bounded. More importantly, due to its dependence on the result
from [6] that NEXP having polynomial-size circuits implies that NEXP coincides
with EXP, the proof in [9] only works when s(n) is polynomially bounded;
our proof gives nontrivial results for s(n) ranging between linear and linear-
exponential.

From typically-correct derandomization We initiate the study of whether typically-
correct derandomization of BPP implies circuit lower bounds. We show that it
does in the case of typically-correct derandomizations that run in NSUBEXP
and are of the quality considered by Goldreich and Wigderson [3].

Theorem 7. If for every positive constant ε there exists a nondeterministic
Turing machine which runs in time 2nε

and correctly decides ACZ on all but at
most 2nε

of the inputs of length n for almost every n, then (i) NEXP does not
have Boolean circuits of polynomial size, or (ii) Perm does not have arithmetic
circuits of polynomial size.

Note that Theorem 7 strengthens the main result of [9], which establishes the
theorem in the special case where the nondeterministic machines decide ACZ
correctly on all inputs. We start with a proof sketch of this weaker result using
our new approach, and then show how to adapt it to the setting of typically-
correct derandomization with error rates of the order considered in [3].

The proof consists of two parts. We first show that P0-1-Perm[1] does not have
circuits of fixed polynomial size, where P0-1-Perm[1] denotes the class of languages
that can be decided in polynomial-time with one query to an oracle for 0-1-Perm.
This follows because PH does not have circuits of fixed polynomial size [10], PH
is contained in P#P[1] [18], and 0-1-Perm is complete for #P under reductions
that make a single query [22].

In the second step we assume that

(α) ACZ has derandomizations Nε of the form described in the statement of
Theorem 7 but without any errors, and

(β) Perm has polynomial-size arithmetic circuits,

and show that these hypotheses imply that P0-1-Perm[1] is contained in NSUBEXP.
The crux is the following single-valued nondeterministic algorithm to compute
the permanent of a given 0-1-matrix M over Z.

1. Guess a polynomial-sized candidate arithmetic circuit C for Perm on matri-
ces of the same dimension as M .

2. Verify the correctness of C. Halt and reject if the test fails.
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3. Use the circuit C to determine the permanent of M in deterministic poly-
nomial time.

The circuit in step 1 exists by virtue of hypothesis (β). By the downward self-
reducibility of Perm, the test in step 2 just has to check an arithmetic circuit
identity based on C, which can be verified in nondeterministic subexponential
time by virtue of (α).

All together, the hypotheses (α) and (β) imply that NSUBEXP does not
have circuits of fixed polynomial size, and therefore neither does NE. Since NE
has a complete language under linear-time reductions, the latter implies that
NEXP does not have polynomial-size circuits.

Now suppose that our nondeterministic algorithms Nε for ACZ can err on a
small number of inputs of any given length `. The test in step 2 above may no
longer be sound nor complete. We can make the test sound if we are given the
number fp(`, ε) of false positives of length `, i.e., the number of inputs of length
` that are accepted by Nε but do not belong to ACZ. This is because we can
guess the list of those fp(`, ε) inputs of length `, verify that they are accepted
by Nε but do not compute the zero polynomial, and then check that the given
input of length ` does not appear on the list. We can make the test complete by
increasing ` a bit and exploiting the paddability of ACZ. Since the number of
errors of Nε is relatively small, for any correct circuit C there has to be a pad that
Nε accepts. Our test can guess such a pad and check it. If Nε makes no more than
2`ε

errors at length `, we obtain simulations of P0-1-Perm[1] in NSUBEXP with
subpolynomial advice. We conclude that the latter class does not have circuits
of fixed polynomial size, which implies that NSUBEXP doesn’t, from which we
conclude as before that NEXP does not have circuits of polynomial size. This
ends our proof sketch of Theorem 7.

Extensions We observe a few variations of Theorems 6 and 7. First, the the-
orems also hold when we simultaneously replace ACZ by AFZ (the restriction
of ACZ to arithmetic formulas), and “arithmetic circuits” by “arithmetic for-
mulas”. Second, we can play with the underlying i.o. and a.e. quantifiers. For
example, in the case of Theorem 7 it suffices for the nondeterministic machines
Nε to correctly decide ACZ on all but at most 2nε

of the inputs of length n for
infinitely many n. Related to the latter variation, we point out that by [7] EXP
differs from BPP iff all of BPP has deterministic typically-correct derandomiza-
tions that run in subexponential time and err on no more than a polynomial
fraction of the inputs of length n for infinitely many n. Thus, extending this
i.o.-version of Theorem 7 to the setting with polynomial error rates would show
that EXP6=BPP implies circuit lower bounds.
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